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Preface to CD

As we were writing Design Patterns, we knew the patterns we weredescribing had
val ue because t hey had proven t hensel ves i n manydi fferent contexts. Qur hope was

t hat ot her software engi neers woul dbenefit fromthese patterns as nmuch as we had.

Now, three years after its debut, we find ourselves both grateful andthrilled
by howthe book has been recei ved. Lots of peopleuseit.Many tell us the patterns
have hel ped themdesi gn and build bettersystens. Many ot hers have been inspired
to wite their own patterns,and the pool of patterns is growi ng. And many have
comrent ed on what mi ght be inproved about the book and what they would like to

see inthe future.

A recurring comment in all the feedback has been how wel | -suited thebook is to
hypertext. There are numerous cross-references, andchasing references is
sonething a conputer can do very well. Sincenuch of the software devel opnent
process takes place on conputers, itwould be natural to have a book |ike ours
as an on-lineresource. Gbservations |ike these got us excited about the potenti al
of thismedium So when M ke Hendri ckson approached us about turning the bookinto

a CD-ROM we junped at the chance.

Two years and several negabytes of e-nmil later, we're delighted thatyou can
finallyobtainthisedition, the DesignPatterns CD, and put its uniquecapabilities
to work. Now you can access a patternfrom your conputer even when sonmeone has
borrowed your book. You can search the text for key words and phrases. It's al so
consi derably easier to incorporate parts of it in your own on-line
docunentation. And if you travel with a notebook conputer, you can keep the

bookhandy wi thout |ugging an extra two pounds of paper.

Hypertext is a relatively new publishing venue, one we arel earning to use just
Ii ke everyone el se. |f you have i deas on howto i nprove this edition, please send

them t odesi gn- patterns-cd@s. ui uc. edu. I f you have questions or suggestions

concerning the patternsthensel ves, send themto

t hegang- of - 4-patterns@s. uiuc. edunmailing list. (To subscribe, send e-nmail to

gang- of - 4- patterns@s. ui uc. eduwi t h t he subj ect "subscribe".) Thislist has quite
a fewreaders, and nany of themcan answer questi ons as well as we can—andusual |y

a lot faster! Also, be sure to check out thePatterns Hone Page

athttp://hillside.net/patterns/.There you'll find other books and mailing lists

on patterns, notto mention conferenceinformationand patterns publishedon-1ine.

This CD entail ed consi derabl e desi gn and i npl ementati on work. W arei ndebted to
M ke Hendri ckson and the teamat Addi son-Wesl ey for theiron-going encouragenent

and support. Jeff Hel gesen, Jason Jones, andDani el Savarese garner many thanks

5


mailto:design-patterns-cd@cs.uiuc.edu
mailto:gang-of-4-patterns@cs.uiuc.edu
http://hillside.net/patterns/

Design Patterns: Elenents of Reusable Object-Oriented Software

for their devel opnent effort andfor patience despite what nust appear to have
been our insatiabl eappetite for revision. A special acknow edgnent is due | BM
Resear ch, whi ch continues to underwite nuch of this activity. W al so t hankt he
revi ewers, including Robert Brunner, Sandeep Dani, Bob Koss, ScottMyers, Stefan
Schul z, and the Patterns Discussion G oup at theUniversity of Illinois

Ur bana- Chanpai gn. Their adviceledto at | east one maj or redesi gn and several ni nor

ones.

Finally, we thank all who have taken tinme to conment on DesignPatterns. Your
f eedback has been invaluable to us as we striveto better our understandi ng and

presentation of this material.

Zurich, Switzerland E. G
Sydney, Australia R H
Urbana, Illinois R J.
Hawt hor ne, New Yor k J. V.

August 1997
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Pref ace to Book

This book isn't an introduction to object-oriented technol ogy or design. Many
books al ready do a good j ob of that. Thi s book assunes you are reasonabl y profi ci ent
in at | east one object-oriented programm ng | anguage, and you shoul d have sone
experience in object-oriented design as well. You definitely shouldn't have to
rush to the nearest dictionary the noment we nention "types" and "pol ynor phi sm "

or "interface" as opposed to "inplenmentation” inheritance.

On the other hand, this isn't an advanced technical treatise either. It’s a book
of desi gnpatternsthat describes sinpl e and el egant sol uti onsto specific problens
in object-oriented software design. Design patterns capture sol utions that have
devel oped and evol ved overtine. Hence they aren't the designs people tend to
generate initially. They reflect untol d redesi gn and recodi ng as devel opers have
struggl ed for greater reuse and flexibility in their software. Design patterns

capture these solutions in a succinct and easily applied form

The design patterns require neither unusual |anguage features nor anmmzing

progranmm ng tricks with which to astound your friends and nmanagers. Al can be
i mpl enent ed i n standard obj ect-orientedl| anguages, thoughthey m ght takealittle
more work than ad hoc solutions. But the extra effort invariably pays dividends

in increased flexibility and reusability.

Once you understand the design patterns and have had an "Aha!" (and not just a
"Huh?") experience with them you won't ever think about object-oriented design
inthe sane way. You'll have insights that can nake your own desi gns nore fl exi bl e,
nodul ar, reusable, and understandabl e-which is why you're interested in

object-oriented technology in the first place, right?

A word of warning and encouragenment: Don't worry if you don’t understand this
book conpletely on the first reading. W didn’t understand it all on the first
witing! Renenber that this isn't a book to read once and put on a shel f. We hope
you'll find yourself referringto it again and again for design insights and for

i nspiration.

Thi s book has had al ong gestation. It has seenfour countries, threeof its authors'
marri ages, and the birth of two (unrel ated) of fspri ng. Many peopl e have had a part
inits devel opment. Special thanks are due Bruce Anderson, Kent Beck, and André
Wei nand for their inspiration and advi ce. W al so t hank t hose who revi ewed drafts
of the manuscript: Roger Bielefeld, G ady Booch, Tom Cargill, Marshall Cine,
Ral ph Hyre, Brian Kernighan, Thomas Laliberty, Mark Lorenz, Arthur R el, Doug
Schmi dt, C ovi s Tondo, Steve Vi noski, andRebecca Wrfs-Brock. W are al so grat ef ul
to the team at Addi son-Wesley for their help and patience: Kate Habib, Tiffany
Moor e, Li sa Raf f ael e, Pradeepa Si va, and John Wai t. Speci al thanks to Carl Kessler,
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Danny Sabbah, and Mark Wegman at | BMResear ch for their unflaggi ng support of this

wor k.

Last but certainly not | east, we thank everyone on the I nternet andpoi nts beyond
who conmented on versions of the patterns, offeredencouragi ng words, and told
us t hat what we wer e doi ng was wort hwhi | e. These peopl e i ncl ude but are not limted
toJon Avotins, Steve Berczuk, Julian Berdych, Matthi as Bohl en, John Brant, Al | an
d ar ke, Paul Chi shol m Jens Col dewey, Dave Col lins, Ji m Coplien, Don

Dwi ggi ns, Gabriele Elia, Doug Felt,Brian Foote, Denis Fortin, Ward Har ol d, Her mann
Hueni , Nayeem | sl am Bi kranjit Kal ra, Paul Keefer, Thomas Kofl er, Doug Lea, Dan
LaLi berte, Janmes Long, Ann Loui se Luu, Pundi Madhavan, Bri an Mari ck, Robert

Martin, Dave McConb, Carl MConnel |, Christine M ngins, Hanspeter Msssenbock, Eric
Newt on, Mari anne Ozkan, Roxsan Payette, Larry Podnolik, George Radin, Sita

Rarmekri shnan, Russ Ranirez, Al exander Ran, Dirk Ri ehl e, Bryan Rosenburg, Aanod
Sane, Duri Schm dt, Robert Seidl, Xin Shu, and Bill Wal ker.

We don't consider this collection of design patterns conplete andstatic; it's
nore a recording of our current thoughts on design. Wwel come conments on it,
whet her criticisns of our exanples, referencesand known uses we've m ssed, or
desi gn patterns we shoul d havei ncl uded. You can wite us care of Addi son-\Wesl ey,

or send electronicmail to design-patterns@s.uiuc.edu. You can al so

obt ai nsoftcopy for the code in the Sanple Code sections by sending thenessage

"send design pattern source" to design-patterns-source@s. uiuc.edu. And now

there's a Wb page at
http://st-ww.cs. uiuc. edu/ users/ patterns/ DPBook/ DPBook. ht Ml for | ate-breaking

i nformati on and updates.

Mountain View, California E. G
Mont real , Quebec R H.
Urbana, Illinois R J.
Hawt hor ne, New Yor k J. V.

August 1994
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For ewor d

Consi der the work of a future software archeol ogi st, tracingthe history of
computing. The fossil recordw |l likely showcl earstrata: hereis alayer forned
of assenbly | anguage artifacts,there is a layer popul ated with the skel etons of
hi gh orderprogramm ng | anguages (with certain calcified | egacy partsprobably
still showi ng sone signs of life). Each such layer willbe intersected with the
imprint of other factors that have shapedthe software | andscape: conponents,
resi due fromt he great operati ng systemand browser wars, nethods, processes, tools.
Eachline in this strata marks a definitive event: belowthat |ine, computing was

this way; above that line, the art of conputing hadchanged.

Design Patterns draws such a |line of denmarcation;this is a work that represents
a change in the practice ofconputing. Erich, Richard, Ralph, and John present
a conpel l'ingcase for the inportance of patterns in crafting conplex

systens. Addi tional |l y, they give us a | anguage of common patterns that canbe used

in a variety of dommins.

The i npact of this work cannot be overstated. As | travel aboutthe world working
with projects of varying donai ns andconplexities, it is uncommon for ne to

encount er devel opers whohave not at | east heard of the patterns novenent. In the
nmor esuccessful projects, it is quite conmon to see many of thesedesign patterns

actual ly used.

Wth this book, the Gang of Four have nade a seninal contribution to software

engi neering. There is much to | earnedfromthem and nuch to be actively applied.

G ady Booch

Chi ef Scientist, Rational Software Corporation
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Qui de to Readers

This book has two main parts. The first part (Chapters 1 and 2)descri bes what
design patterns are and how they hel p you desi gnobject-oriented software. It
i ncl udes a desi gn case st udy t hat denonst r at es howdesi gn patterns apply i npractice.
The second partof the book (Chapters 3, 4, and 5) is a catal og of the actual

desi gnpatterns.

The catal og nakes up the majority of the book. Its chapters dividethe design
patterns into three types: creational, structural, andbehavioral. You can use
the catalog in several ways. You can readthe catalog fromstart to finish, or
you can just browse frompatternto pattern. Another approach is to study one of
the chapters. Thatwill help you see how closely related patterns distinguish

t henmsel ves.

You can use the references between the patterns as a | ogicalroute through the
catal og. Thi s approachw || gi ve youinsightintohowpatternsrelateto each other,
howt hey can be conbi nedw t h ot her patterns, and whi ch patterns work wel | together.

Figure 1.1(page 23) depicts these references graphically.

Yet another way to read the catalog is to use a nore probl emdirectedapproach.
Skip to Section 1.6 (page 23) to read about some conmon problens in designing
reusabl e object-orientedsoftware; then read the patterns that address these

probl enms. Sonmepeopl ereadthe catal ogthroughfirst andthen use aprobl emdirected

approach to apply the patterns to their projects.

I f youaren't an experi enced obj ect-orienteddesigner, thenstart w ththe sinplest

and npst common patterns:

Abstract Factory (page 99)
Adapt er (157)

Conposi te (183)

Decorator (196)

Factory Method (121)
bserver (326)

Strategy (349)

Tenpl ate Met hod (360)

It's hard to find an object-oriented systemthat doesn't use at |easta couple
of these patterns, and | arge systens use nearly all of them This subset will help
you understand design patterns in particul ar andgood object-oriented design in

gener al .
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1. Introduction

Desi gni ng object-oriented software is hard, and designing reusabl e
object-oriented software i s even harder. You nmust find perti nent objects, factor
themintocl asses at theright granularity, defineclassinterfaces andinheritance
hi erarchi es, and establish key rel ati onshi ps anong them Your desi gn should be
specific tothe probl emat hand but al so general enough t o address future probl ens
and requirements. You also want to avoid redesign, or at least mnimze it.
Experienced obj ect-oriented designers will tell you that a reusabl e and flexible
design is difficult if not inpossible to get "right" the first tine. Before a
designis finished, they usually try toreuseit several tinmes, nodifyingit each

time.

Yet experienced object-oriented designers do nake good desi gns. Meanwhil e new
designers are overwhel med by the options available and tend to fall back on
non- obj ect-ori ented techniques they've used before. It takes a long time for
novices to | earn what good object-oriented design is all about. Experienced

designers evidently know sonet hi ng i nexperienced ones don't. Wuat is it?

One thing expert designers know not to do is solve every problem fromfirst

principles. Rather, they reuse solutions that have worked for themin the past.
When they find a good solution, they use it again and agai n. Such experience is
part of what nmakes them experts. Consequently, you'll find recurring patterns
of classes and communi cati ng objects in many object-oriented systens. These

patterns sol ve specific design problens and make object-oriented designs nore
flexible, elegant, and ultimately reusable. They hel p desi gners reuse successf ul
desi gns by basi ng new designs on prior experience. A designer who is famliar
with such patterns can apply themimedi ately to desi gn problens wi thout having

to rediscover them

An analogy will helpillustratethe point. Novelists and pl aywights rarely design
their plots fromscratch. Instead, they followpatterns |ike "Tragically Fl aned
Hero" (Macbeth, Haml et, etc.) or "The Ronmantic Novel " (countl ess romance novel s).
Inthe sane way, object-oriented designers followpatterns|ike "represent states
wi th obj ects" and "decorate objects so you can easily add/renove features." Once

you know the pattern, a | ot of design decisions follow automatically.

We all know t he val ue of design experience. How many ti mes have you had desi gn
déj a-vu—that feeling that you' ve sol ved a probl embefore but not know ng exactly
where or how? If you could remenber the details of the previous probl emand how
you sol ved it, then you could reuse the experience instead of rediscoveringit.
However, we don't do a good job of recordi ng experience in software design for

others to use.

11
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The purpose of this book is to record experience in designing object-oriented
sof tware as desi gn patterns. Each design pattern systenatical |y nanes, expl ains,
and eval uates an i nportant and recurring design in object-oriented systens. Qur
goal is to capture design experience in a formthat people can use effectively.
To this end we have docunented sone of the nost inportant design patterns and

present them as a catal og.

Desi gn patterns nake it easier to reuse successful designs and architectures.
Expressi ng proven techni ques as design patterns makes them nore accessible to
devel opers of new systens. Design patterns hel p you choose design alternatives
that make a systemreusabl e and avoid alternatives that conpronise reusability.
Desi gn patterns can even inprove t he docunentation and mai nt enance of existing
systens by furni shing an explicit specification of class and obj ect interactions
and their underlying intent. Put sinply, design patterns help a designer get a

design "right" faster.

None of the design patterns in this book describes new or unproven designs. W
have included only designs that have been applied nore than once in different
systens. Most of these designs have never been docunment ed before. They are either
part of the folklore of the object-oriented community or are el enents of sonme
successful object-oriented systens—neither of whichis easy for novi ce designers
to learn from So although these designs aren't new, we capture themin a new

and accessible way: as a catal og of design patterns having a consistent format.

Despite the book's size, the design patterns in it capture only a fraction of
what an expert might know. It doesn't have any patterns dealing with concurrency
or distributed progranmng or real-tinme programm ng. |t doesn't have any
application domain-specific patterns. It doesn't tell you how to build user
interfaces, howtowitedevicedrivers, or howt o use an obj ect-ori ent ed dat abase.
Each of these areas has its own patterns, and it woul d be worthwhile for sonmeone

to catal og those too.

YWhat is a Design Pattern?

Chri st opher Al exander says, "Each pattern describes a probl emwhich occurs over
and over again in our environment, and then describes the core of the solution
to that problem in such a way that you can use this solution a mllion tines
over, wi thout ever doing it the same way tw ce" [Al S+77]. Even though Al exander
was tal ki ng about patterns in buildings and towns, what he says is true about
obj ect-oriented design patterns. Qur solutions are expressed in terns of objects
and interfacesinstead of walls and doors, but at t he core of both ki nds of patterns

is a solution to a problemin a context.

In general, a pattern has four essential elenents:

12
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1. The pattern nane is a handl e we can use to describe a design problem its
sol utions, and consequences in aword or two. Naming a pattern i medi ately
i ncreases our design vocabulary. It lets us design at a higher |evel of
abstraction. Having a vocabul ary for patterns | ets us tal k about themw th
our col | eagues, in our docunentation, and even to ourselves. It makes it
easi er to thi nk about designs and to conmuni cate themand their trade-offs
to ot hers. Fi ndi ng good nanes has been one of t he hardest parts of devel opi ng
our catal og.

2. The probl emdescribes when to apply the pattern. It explains the problem
and its context. It mght describe specific design problens such as how
to represent algorithnms as objects. It mght describe class or object
structures that are synptomatic of an inflexible design. Sonetines the
problemw Il include alist of conditions that nust be net before it nekes
sense to apply the pattern.

3. The solution describes the elements that nake up the design, their
rel ationshi ps, responsibilities, and col | aborations. The sol uti on doesn't
describe a particul ar concrete design or i npl enentati on, because a pattern
islikeatenpl atethat canbeappliedinmnydifferent situations. |nstead,
the pattern provides an abstract description of a design probl emand how
a general arrangenent of el ements (cl asses and obj ects i n our case) sol ves
it.

4. The consequences are the results and trade-offs of applying the pattern.
Though consequences are oft en unvoi ced when we descri be desi gn deci si ons,
they arecritical for evaluating desi gn alternatives and for under st andi ng
the costs and benefits of applying the pattern. The consequences for
software of ten concern space and ti ne trade-offs. They nay addr ess | anguage
and i npl ementation issues as well. Since reuse is often a factor in
obj ect-oriented design, the consequences of a pattern include its inpact
on a systems flexibility, extensibility, or portability. Listing these

consequences explicitly hel ps you understand and eval uate them

Poi nt of view affects one's interpretation of what is and isn't a pattern. One
person's pattern can be another person's primtive building bl ock. For this book
we have concentrated on patterns at acertainlevel of abstraction. Desi gn patterns
are not about designs such as linked |lists and hash tables that can be encoded
in classes and reused as is. Nor are they conpl ex, domain-specific designs for

an entire application or subsystem The design patterns in this book are

descriptions of conmunicating objects and classes that are custonized to sol ve

a general design problemin a particular context.

A design pattern nanes, abstracts, and identifies the key aspects of a conmon
designstructurethat makeit useful for creatingareusabl e object-orienteddesign.
The designpatternidentifiesthe participatingclasses andinstances, their roles

and col | aborations, and the di stribution of responsibilities. Each design pattern
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focuses on a particular object-oriented design problemor issue. It describes
when it applies, whether it can be applied in viewof other design constraints,
and t he consequences and trade-of fs of its use. Since we nust eventual |y i npl enent
our designs, a design pattern al so provi des sanpl e C++ and (somreti nes) Smal |l tal k

code to illustrate an inplenentation.

Al t hough design patterns describe object-oriented designs, they are based on
practical solutions that have been inplenented in mai nstream object-oriented
progranm ng | anguages |ike Smalltal k and C++ rather than procedural |anguages
(Pascal, C, Ada) or nore dynam c object-oriented | anguages (CLCS, Dyl an, Self).
We chose Snalltal k and C++ for pragmatic reasons: Qur day-to-day experience has

been in these | anguages, and they are increasingly popular.

The choi ce of programmi ng | anguage i s i nportant because it i nfluences one's point
of view Qur patterns assume Snalltal k/ C++-1evel |anguage features, and that
choi ce determ nes what can and cannot be inplenmented easily. If we assuned
procedural | anguages, we m ght have i ncl uded desi gn patterns call ed "I nheritance,"

"

"Encapsul ation," and " Pol ynorphism" Simlarly, some of our patterns are supported
directly by the | ess commbn object-oriented | anguages. CLOS has nul ti - net hods,
for exanpl e, which |l essen the need for a pattern such as Visitor (page 366). In
fact, there are enough differences between Snalltal k and C++ to nmean that sone
patterns can be expressed nore easily inonelanguage thanthe other. (Seelterator

(289) for an exanple.)

YDesign Patterns in Smalltal k WC

The Model / View Controller (M/C) triad of classes [KP88] is used to build user
interfaces in Smal I tal k-80. Looki ng at the desi gn patterns i nsi de WC shoul d hel p

you see what we nean by the term"pattern."

M/C consi sts of three kinds of objects. The Model is the application object, the
Viewis its screen presentation, and the Controller defines the way the user
interface reacts to user i nput. Before MWC, user interface designs tended to | unp

these objects together. MVC decouples themto increase flexibility and reuse.

MVC decoupl es vi ews and nodel s by est abl i shi ng a subscri be/notify protocol between
them A view nust ensure that its appearance reflects the state of the nodel.
Whenever the npdel's data changes, the nodel notifies views that depend on it.
In response, each view gets an opportunity to update itself. This approach lets
you attach multiple views to a nodel to provide different presentations. You can

al so create new views for a nodel without rewiting it.

The f ol | owi ng di agramshows a nodel and t hree vi ews. (W'veleft out thecontrollers

for sinmplicity.) The nodel contains some data val ues, and the views defining a

14
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spreadsheet, histogram and pie chart display these data in various ways. The
nodel conmmuni cateswithits views whenits val ues change, andt he vi ews conmuni cat e

with the nodel to access these val ues.

views

. window IHE.I . window Iaﬂ W _window Iaﬂl

al|blc
x| 60| 30|10
y| 50| 30 | 20
2801|1010

model

Taken at face value, this exanple reflects a design that decouples views from
nodel s. But the designis applicableto anoregeneral problem decoupling objects
so t hat changes t o one can af f ect any nunber of ot hers wi t hout requi ringt he changed
object to know details of the others. This nore general design is described by

the Observer (page 326) design pattern.

Anot her feature of MVCis that views can be nested. For exanple, a control panel
of buttons nmi ght be i npl emented as a conpl ex vi ew cont ai ni ng nested button vi ews.
The user interface for an object inspector can consist of nested views that may
be reused i n a debugger. M/C supports nested views with the ConpositeVi ew cl ass,
a subcl ass of View. ConpositeViewobjects act just |ike Viewobjects; a conposite
vi ew can be used wherever a view can be used, but it also contains and nanages

nested vi ews.

Again, we could think of this as a design that lets us treat a conposite view
just like we treat one of its conponents. But the design is applicable to a nore
general problem which occurs whenever we want to group objects and treat the

group like an individual object. This nore general design is described by the
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Conposite (183) design pattern. It lets you create a class hierarchy in which
sone subcl asses define primtive objects (e.g., Button) and ot her cl asses defi ne
conposi te obj ects (ConpositeView) that assenble the primtives into nore conpl ex

obj ect s.

M/C al so |l ets you change the way a view responds to user input w thout changing
itsvisual presentation. Youm ght want tochangethewayit respondstothekeyboard,
for exanpl e, or have it use a pop-up nenu i nstead of command keys. MVC encapsul at es
the response nechanismin a Controller object. There is a class hierarchy of

controllers, makingit easytocreateanewcontroller asavariationonanexisting

one.

Avi ewuses aninstance of a Control | er subclasstoinpl enent aparticul ar response
strategy; to inplement a different strategy, sinply replace the instance with
a different kind of controller. It's even possible to change a view s controller
at run-tinetolet the viewchange the way it responds to user i nput. For exanpl e,
a view can be disabled so that it doesn't accept input sinply by giving it a

controller that ignores input events.

The Vi ew Control |l er rel ationshi pi s anexanpl eof the Strategy (349) desi gnpattern.
A Strategy is an object that represents an algorithm It's useful when you want
to replace the algorithmeither statically or dynanically, when you have a | ot
of variants of the algorithm or when the al gorithmhas conpl ex data structures

that you want to encapsul ate.

M/Cuses ot her desi gn patterns, such as Factory Method (121) to specify the defaul t
controller class for a view and Decorator (196) to add scrolling to a view. But
the main relationships in MWCare given by the Cbserver, Conposite, and Strategy

design patterns.

¥YDescribing Design Patterns

How do we describe design patterns? G aphical notations, while inmportant and
useful, aren't sufficient. They sinply capture the end product of the design
process as rel ationshi ps between cl asses and objects. To reuse the design, we
nust al so record the decisions, alternatives, and trade-offs that led to it.

Concr et e exanpl es are i nportant too, becausethey hel pyou seethedesigninaction.

We descri be design patterns using a consistent format. Each pattern is divided
into sections according to the following tenplate. The tenplate | ends a uniform
structure to the i nformati on, maki ng design patterns easier to | earn, conpare,

and use.

Pattern Nane and d assification
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The pattern's name conveys the essence of the pattern succinctly. A
good nane is vital, because it will becone part of your design vocabul ary.
The pattern's classification reflects the scheme we i ntroduce in Section
1.5.

I nt ent

A short statenent that answers the foll ow ng questions: What does the
design pattern do? What isits rational eandintent? Wat particul ar design

i ssue or problemdoes it address?

Al so Known As

O her well-known nanes for the pattern, if any.

Mot i vation

Ascenariothat illustrates adesignproblemand howt he cl ass and obj ect
structures in the pattern solve the problem The scenario will help you

under stand the nore abstract description of the pattern that foll ows.

Applicability

What are the situations in which the design pattern can be applied?
What are exanpl es of poor designs that the pattern can address? How can

you recogni ze these situations?

Structure

Agraphical representationof theclassesinthepatternusinganotation
based on the Object Mdeling Technique (OMI) [RBP+91]. W also use
interaction diagrans [ JCI02, Boo94] to illustrate sequences of requests
and col | aborati ons bet ween obj ects. Appendi x B descri bes these notations

in detail.

Partici pants

The cl asses and/ or obj ects participatinginthe designpatternandtheir

responsi bilities.

Col | aborati ons

How t he participants collaborate to carry out their responsibilities.

Consequences
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How does the pattern support its objectives? Wat are the trade-offs
and results of using the pattern? What aspect of systemstructure does it

| et you vary independently?
I mpl enent ati on

What pitfalls, hints, or techniques should you be aware of when

i mpl enenting the pattern? Are there | anguage-specific issues?
Sanpl e Code

Code fragments that illustrate howyou m ght inplenent the patternin

C++ or Smalltal k.
Known Uses

Exanpl es of the pattern found in real systens. W include at | east two

exanpl es fromdifferent domains.
Rel ated Patterns

What design patterns are closely related to this one? Wat are the

i mportant differences? Wth which other patterns should this one be used?

The appendi ces provi de background i nformation that will hel p you understand t he
patterns and the di scussions surrounding them Appendix A is a glossary of
term nol ogy we use. W' ve al ready nment i oned Appendi x B, whi ch presentsthevarious
notations. We'll al so describe aspects of the notations as we i ntroduce themin
the upcomi ng di scussions. Finally, Appendix C contains source code for the

foundati on classes we use in code sanpl es.

YThe Catal og of Design Patterns

The cat al og begi nning on page 93 contains 23 design patterns. Their nanes and
intents are listed next to give you an overvi ew. The nunber in parentheses after
each pattern name gives the page nunber for the pattern (a convention we foll ow
t hroughout the book).

Abstract Factory (99)

Provide an interface for creating famlies of related or dependent

obj ects without specifying their concrete classes.

Adapt er (157)
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Convert theinterface of aclassintoanother interface clients expect.
Adapter lets classes work together that couldn't otherw se because of

i nconpati ble interfaces.
Bridge (171)

Decoupl e an abstraction fromits inplenentation so that the two can

vary independently.
Bui | der (110)

Separ ate the construction of a conpl ex object fromits representati on

sothat t he same constructi onprocess cancreatedifferent representati ons.
Chain of Responsibility (251)

Avoi d coupling the sender of a request to its receiver by giving nore
t han one obj ect a chance to handl e the request. Chai n the receiving obj ects

and pass the request along the chain until an object handles it.
Conmmand (263)

Encapsul ate a request as an object, thereby letting you paraneterize
clientsw thdifferent requests, queue or | ogrequests, and support undoabl e

operations.
Conposite (183)

Conpose objects into tree structures to represent part-whole
hi erarchies. Conposite lets clients treat individual objects and

compositions of objects uniformy.
Decorator (196)

Attach additional responsibilitiestoanobject dynam cally. Decorators

provide aflexiblealternativetosubclassingfor extendingfunctionality.
Facade (208)

Provideaunifiedinterfacetoaset of interfacesinasubsystem Facade

defines a higher-level interface that makes the subsystemeasier to use.
Factory Method (121)

Define an interface for creating an object, but | et subcl asses decide

whichclasstoinstantiate. Factory Method | ets a cl ass defer i nstanti ati on

19



Design Patterns: Elenents of Reusable Object-Oriented Software

to subcl asses.
FI ywei ght (218)

Use sharing to support large nunbers of fine-grained objects

efficiently.
Interpreter (274)

G ven a | anguage, define a represention for its grammar along with an
interpreter that uses the representation to interpret sentences in the

| anguage.
Iterator (289)

Provi de away to access t he el enents of an aggr egat e obj ect sequential ly

wi t hout exposing its underlying representation.
Medi at or (305)

Define an object that encapsulates how a set of objects interact.
Medi at or pronot es | oose coupl i ng by keepi ng obj ects fromreferringto each

other explicitly, and it lets you vary their interaction independently.
Menmento (316)

W thout violating encapsul ati on, capture and externalize an object's

internal state so that the object can be restored to this state later.
Observer (326)

Defi ne a one-to- many dependency bet ween obj ects so t hat when one obj ect

changes state, all its dependents are notified and updated automatically.
Prot otype (133)

Speci fy the ki nds of objects to create using a prototypical instance,

and create new objects by copying this prototype.
Proxy (233)

Provi de a surrogat e or pl acehol der for anot her obj ect to control access
toit.

Si ngl et on (144)
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Ensure a class only has one instance, and provide a global point of

access to it.

State (338)

Al'l ow an object to alter its behavior whenits internal state changes.

The object will appear to change its cl ass.

Strategy (349)

Define a famly of algorithnms, encapsul ate each one, and nake them
i nterchangeable. Strategy lets the algorithm vary independently from

clients that use it.
Tenpl ate Met hod (360)

Define the skeleton of an algorithmin an operation, deferring sonme
steps t o subcl asses. Tenpl at e Met hod | et s subcl asses redefi ne certai n steps

of an al gorithmw thout changing the algorithms structure.

Visitor (366)

Represent an operation to be perfornmed on the el ements of an object
structure. Visitor lets you define a new operation w thout changing the

cl asses of the elenents on which it operates.

YOrgani zing the Catal og

Design patterns vary intheir granularity and | evel of abstracti on. Because there
are many desi gn patterns, we need a way to organi ze them This section classifies
design patterns so that we can refer to famlies of related patterns. The

classification hel ps you learn the patterns in the catalog faster, and it can

direct efforts to find new patterns as well.

We classify design patterns by two criteria (Table 1.1). The first criterion,
cal | ed pur pose, refl ects what a pattern does. Patterns can have either creational,
structural, or behavioral purpose. Creational patterns concern the process of
object creation. Structural patterns deal with the conposition of classes or

obj ects. Behavioral patterns characterize the ways in which classes or objects

interact and distribute responsibility.

Pur pose
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Scope | Cl ass Factory Method (121) Adapter (157) Interpreter (274)
Tenpl at e Met hod (360)

Cbj ect Abstract Factory (99) Adapter (157) Chai n of Responsibility

Bui | der (110) Bri dge (171) (251)
Pr ot ot ype (133) Conposite (183) Command (263)
Si ngl et on (144) Decorator (196) Iterator (289)
Facade (208) Medi at or (305)
Fl ywei ght (218) Menento (316)
Proxy (233) Qbserver (326)
State (338)

Strategy (349)
Visitor (366)

Table 1.1: Design pattern space

The second criterion, called scope, specifies whether the pattern applies

primarily toclasses or toobjects. Class patterns deal withrel ati onshi ps between
classes and their subcl asses. These rel ationships are established through

i nheritance, sothey are static—fixed at conpile-tine. Object patterns deal with
obj ect rel ati onshi ps, whi ch can be changed at run-tinme and ar e nore dynani c. Al npst
al |l patterns use inheritance to sone extent. So the only patterns | abel ed "cl ass
patterns" are those that focus on class relationships. Note that nost patterns

are in the Object scope.

Creational class patterns defer some part of object creationto subclasses, while
Creational object patterns defer it to another object. The Structural class

patterns use inheritance to conpose cl asses, whilethe Structural object patterns
descri be ways to assenbl e obj ects. The Behavi oral cl ass patterns use i nheritance
to describe al gorithns and fl owof control, whereas t he Behavi oral object patterns
descri be how a group of objects cooperate to performa task that no single object

can carry out al one.

There are ot her ways to organi ze t he patterns. Some patterns are often used t oget her.
For exanpl e, Conposite is often used with lterator or Visitor. Some patterns are
alternatives: PrototypeisoftenanalternativetoAbstract Factory. Sone patterns
result in simlar designs even though the patterns have different intents. For

exanpl e, the structure diagrans of Conposite and Decorator are sinmilar.
Yet another way to organi ze design patterns is according to how they reference

each other in their "Related Patterns" sections. Figure 1.1 depicts these

rel ati onshi ps graphically.
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Clearly there are many ways to organi ze design patterns. Having nultiple ways
of thinking about patterns will deepen your insight into what they do, howthey
conpare, and when to apply them
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Figure 1.1: Design pattern relationships

YHow Design Patterns Sol ve Design Probl ens

Desi gn patterns sol ve many of the day-to-day probl ens object-oriented designers
face, and i n many di fferent ways. Here are several of these probl ens and howdesi gn
patterns sol ve them
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Fi ndi ng Appropriate Objects

bj ect-oriented progranms are made up of objects. An object packages both data
and t he procedures t hat operate on that data. The procedures are typically called
nmet hods or operations. An object perfornms an operation whenit receives a request

(or nessage) froma client.

Requests are the only way to get an object to execute an operation. Operations
aretheonly way tochange an obj ect' sinternal data. Because of theserestrictions,
the object's internal state is said to be encapsulated; it cannot be accessed

directly, and its representation is invisible fromoutside the object.

The hard part about object-oriented designis deconposing a systeminto objects.
The task is difficult because many factors cone into play: encapsul ation,
granul arity, dependency, flexibility, performance, evolution, reusability, and

on and on. They all influence the deconposition, often in conflicting ways.

bj ect-oriented design nethodol ogi es favor many different approaches. You can
wite aprobl emstatenment, singleout thenouns and verbs, and create correspondi ng
cl asses and operations. O you can focus onthe col | aborations andresponsibilities
in your system O you can nodel the real world and transl ate the objects found
during analysis into design. There will always be di sagreenment on whi ch approach

is best.

Many obj ects i n a desi gn cone fromt he anal ysi s nodel . But obj ect-ori ented desi gns
often end up with classes that have no counterparts in the real world. Sone of
thesearel owlevel classeslikearrays. O hers arenuch hi gher-1evel. For exanpl e,
the Conposite (183) pattern introduces an abstraction for treating objects
uni formy that doesn't have a physical counterpart. Strict nodeling of the real
world leads to a systemthat reflects today's realities but not necessarily
tonorrow s. The abstractions that energe during design are key to maki ng a desi gn

flexible.

Desi gn patterns hel p you identify | ess-obvi ous abstracti ons and t he obj ects t hat
can capture them For exanpl e, objects that represent a process or al gorithmdon't
occur in nature, yet they are a crucial part of flexible designs. The Strategy
(349) pattern describes howto i npl enent interchangeable fam |ies of al gorithns.
The State (338) pattern represents each state of an entity as an object. These
obj ect s ar e sel domf ound duri ng anal ysi s or eventhe early stages of design; they're

di scovered later in the course of naking a design nore flexible and reusabl e.
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Determ ning Cbject Ganularity

bj ects can vary trenendously in size and nunber. They can represent everything
down to the hardware or all the way up to entire applications. How do we deci de

what shoul d be an object?

Desi gn patterns address this issue as well. The Facade (208) pattern describes
howto represent conpl ete subsystens as objects, and the Fl ywei ght (218) pattern
descri bes how to support huge numbers of objects at the finest granularities.
O her design patterns descri be specific ways of deconposi ng an obj ect intosnaller
obj ects. Abstract Factory (99) and Builder (110) yield objects whose only

responsibilitiesarecreatingother objects. Visitor (366) and Comrand (263) yield
obj ects whose only responsibilities are to i npl ement a request on anot her object

or group of objects.

Speci fying Object Interfaces

Every operation decl ared by an obj ect specifies the operation's nane, the objects
it takes as paraneters, and the operation's return value. This is known as the
operation's signature. The set of all signatures defined by an obj ect's operations
is called the interface to the object. An object's interface characterizes the
compl ete set of requests that can be sent to the object. Any request that matches

a signature in the object's interface may be sent to the object.

A type is a nane used to denote a particular interface. W speak of an object
as having the type "Wndow' if it accepts all requests for the operations defined
intheinterface naned "W ndow. " An obj ect may have many t ypes, and wi del y di ff erent
obj ects can share a type. Part of an object's interface nay be characterized by
one type, and ot her parts by other types. Two objects of the sane type need only
shareparts of their interfaces. I nterfaces cancontai nother interfaces as subsets.
We say that atypeis asubtype of another if its interface contains theinterface
of its supertype. Often we speak of a subtype inheriting the interface of its

supertype.

Interfaces are fundamental in object-oriented systenms. Objects are known only
through their interfaces. There is no way to know anythi ng about an object or
toaskit todoanythingwthout goingthroughitsinterface. Anobject'sinterface
says nothing about its inplenmentati on—different objects are free to inplenent
requests differently. That nmeans two objects having conpletely different

i mpl enent ati ons can have identical interfaces.

When a request is sent to an object, the particular operation that's performed
depends on both the request and the receiving object. Different objects that

support identical requests may have different inplenmentati ons of the operations

25



Design Patterns: Elenents of Reusable Object-Oriented Software

that fulfill these requests. The run-tine associ ation of a request to an object

and one of its operations is known as dynam c binding.

Dynami ¢ bi ndi ng neans that issuing a request doesn't conmt you to a particul ar
i mpl enentation until run-time. Consequently, you can wite prograns that expect
an object withaparticular interface, knowi ngt hat any obj ect that has t he correct
interface will accept the request. Moreover, dynam c binding |l ets you substitute
objects that have identical interfaces for each other at run-time. This
substitutability is known as pol ynorphism and it's a key concept in
object-oriented systens. It lets aclient object nake fewassunpti ons about ot her
obj ects beyond supporting a particular interface. Polynorphismsinplifies the
definitions of clients, decouples objects fromeach other, and lets themvary

their relationships to each other at run-tine.

Desi gn patterns hel p you define interfaces by identifying their key el ements and
the ki nds of data that get sent across an interface. A design pattern mght al so
tell you what not to put in the interface. The Menmento (316) pattern is a good
exanpl e. It descri bes howto encapsul ate and save the i nternal state of an object
so that the object can be restored to that state later. The pattern stipul ates
t hat Menent o obj ect s nust definetwointerfaces: arestrictedonethat letsclients
hol d and copy nenentos, and a privileged one that only the original object can

use to store and retrieve state in the nenento.

Desi gn patterns also specify rel ationshi ps between interfaces. In particular,
they often require sone classes to have simlar interfaces, or they place
constraints on the interfaces of sone cl asses. For exanpl e, both Decorator (196)
and Proxy (233) require the interfaces of Decorator and Proxy objects to be
identical to the decorated and proxied objects. In Visitor (366), the Visitor

interface nust reflect all classes of objects that visitors can visit.

Speci fying Object |nplenentations

So far we've said little about how we actually define an object. An object's
i mpl enentationis defined by its class. The cl ass specifies the object's internal

data and representati on and defines the operations the object can perform

Qur OMT- based not ati on (summari zed i n Appendi x B) depicts a cl ass as a rectangl e
with the class nanme in bold. Operations appear in normal type bel ow the class
nane. Any data that the cl ass defines cones after the operations. Lines separate

the class nane fromthe operations and the operations fromthe data:
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ClassMame

Operation?()
Type Operation2()

instanceVariable1
Type instanceVariable2

Return types and instance variable types are optional, since we don't assune a

statically typed inplenmentati on | anguage.

bj ects are created by instantiating a cl ass. The obj ect is saidto be aninstance
of the class. The process of instantiating a class allocates storage for the
object's internal data (made up of instance variables) and associ ates the
operations with these data. Many simlar instances of an object can be created

by instantiating a class.

A dashed arrowhead line indicates a class that instanti ates objects of another

class. The arrow points to the class of the instantiated objects.

Instantiator |f-—--------- = Instantiatee

New cl asses can be defined in terns of existing classes using class inheritance.
When a subcl ass inherits froma parent class, it includes the definitions of all
the data and operati ons that t he parent cl ass defines. Objects that are i nstances
of thesubclassw |l containall datadefinedbythesubclassanditsparent cl asses,
and they'I|l be able to performall operations defined by this subclass and its

parents. W indicatethe subclassrelationshipwithavertical [ineandatriangle:

ParentClass

Cperation()

Subclass

An abstract class is one whose nain purpose is to define a common interface for
its subclasses. An abstract class will defer sonme or all of its inplenmentation

tooperations definedinsubcl asses; hence an abstract cl ass cannot bei nstanti at ed.
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The operations that an abstract cl ass decl ares but doesn't inplenent are called

abstract operations. C asses that aren't abstract are called concrete cl asses.

Subcl asses can refine and redefine behaviors of their parent classes. Mre

specifically, a class may override an operation defined by its parent class.
Overriding gives subcl asses a chance to handl e requests i nstead of their parent
cl asses. Cass inheritance lets you define classes sinply by extendi ng other

cl asses, makingit easytodefinefamlies of objects havingrelatedfunctionality.

The nanes of abstract classes appear in slanted type to distinguish themfrom
concrete classes. Slanted type is also used to denote abstract operations. A

di agrammay i ncl ude pseudocode for an operation's inplenmentation; if so, the code

wi Il appear in a dog-eared box connected by a dashed line to the operation it
i mpl enent s.

AbstractClass

Oparation()

ConcreteSubclass

implementation

Operafion() O----q---—----=---17 pseudocode

A mxin class is a class that's intended to provide an optional interface or
functionality to other classes. It's simlar to an abstract class in that it's

not intended to be instantiated. Mxin classes require multiple inheritance:

ExistingClass Mixin

ExistingQperation) MixinOpearation{}

A . A

AugmentedClass

ExistingOparation()
MixinOperation|{}
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Cl ass versus Interface Inheritance

It's inportant to understand the di fference between an object's class and its

type.

An object's class defines howthe object is inplemented. The cl ass defines the
object's internal state and the inplenentation of its operations. In contrast,
an object's type only refers to its interface-the set of requests to which it
can respond. An object can have many types, and objects of different classes can

have t he sane type.

O course, there's a close rel ationship between class and type. Because a cl ass
defines the operations an object can perform it also defines the object's type.
Wien we say that an object is an instance of a class, we inply that the object

supports the interface defined by the class.

Languages |i ke C++ and Eiffel use classes to specify both an object's type and
its inplementation. Snmalltalk programs do not declare the types of variabl es;
consequently, the conpil er does not check that the types of objects assigned to
avariabl e are subt ypes of the variabl e' stype. Sendi ng a message requi r es checki ng
that the class of the receiver inplenments the nmessage, but it doesn't require

checking that the receiver is an instance of a particular class.

It's also inmportant to understand the difference between class inheritance and
interface inheritance (or subtyping). Cass inheritance defines an object's

impl enentation in terns of another object's inplementation. In short, it's a
mechani smf or code and representation sharing. I ncontrast, interfaceinheritance

(or subtyping) describes when an object can be used in place of another.

It's easy to confuse these two concepts, because nany | anguages don't make the
distinction explicit. In |anguages |ike C++ and Eiffel, inheritance nmeans both
interfaceandinpl ementati oninheritance. The standardway toinherit aninterface
inC+t+istoinherit publiclyfromaclassthat has (pure) virtual menber functions.
Pure interface i nheritance can be approxi mated i n C++ by i nheriting publicly from
pure abstract classes. Pure inplenentation or class inheritance can be
approximated with private inheritance. In Smalltalk, inheritance neans just

i mpl enent ati on i nheritance. You can assign i nstances of any class to a variable
as long as those instances support the operation performed on the value of the

vari abl e.
Al 't hough nost progranmm ng | anguages don't support the distinction between

interfaceandi npl enentationinheritance, peopl e make thedi stinctioninpractice.

Smal I tal k programmers usual ly act as if subcl asses were subtypes (though there
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are some wel | -known exceptions [Co092]); C++ progranmers mani pul ate objects

t hrough types defined by abstract classes.

Many of the design patterns depend on this distinction. For exanple, objects in
a Chain of Responsibility (251) nust have a comon type, but usually they don't
share a conmon i npl erent ati on. I nthe Conposite (183) pattern, Conmponent defines
a conmon i nterface, but Conposite often defines a conmon i npl enent ati on. Conmand
(263), Observer (326), State (338), and Strategy (349) are often inplemented with

abstract classes that are pure interfaces.

Progranming to an Interface, not an |nplenentation

Class inheritance is basically just a mechani smfor extending an application's
functionality by reusing functionality in parent classes. It lets you define a
newki nd of object rapidlyinterns of anoldone. It | ets youget newi npl enent ati ons

al nost for free, inheriting nost of what you need from existing classes.

However, inplenmentation reuse is only half the story. Inheritance's ability to
define famlies of objects with identical interfaces (usually by inheriting from

an abstract class) is also inmportant. Why? Because pol ynor phi sm depends on it.

When i nheritance i s used carefully (some will say properly), all classes derived
froman abstract class will share its interface. This inplies that a subclass
nmerel y adds or overrides operations and does not hide operations of the parent
class. Al subcl asses can then respond to the requests in the interface of this

abstract class, making themall subtypes of the abstract class.

There are two benefits to mani pul ati ng objects solely interms of the interface

defined by abstract cl asses:

1. dients remain unaware of the specific types of objects they use, as | ong
as the objects adhere to the interface that clients expect.
2. dientsrenmainunaware of the classes that i npl ement these objects. dients

only know about the abstract class(es) defining the interface.

This so greatly reduces inpl enentati on dependenci es between subsystens that it

leads to the followi ng principle of reusable object-oriented design:

Programto an interface, not an inplenentation.

Don't decl are vari abl es to be i nstances of particul ar concrete classes. |nstead,
commit only to an interface defined by an abstract class. Youw Il findthis to

be a common thene of the design patterns in this book.
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You have to instantiate concrete classes (that is, specify a particular

i mpl enent ati on) somewhere i n your system of course, and the creati onal patterns
(Abstract Factory (99), Builder (110), Factory Method (121), Prototype (133)
and Singleton (144) let you do just that. By abstracting the process of object
creation, these patterns give you different ways to associate an interface with
its inplementation transparently at instantiation. Creational patterns ensure

that your systemis witten in ternms of interfaces, not inplenentations.

Putting Reuse Mechanisns to Work

Most peopl e can understand concepts |ike objects, interfaces, classes, and
i nheritance. The challenge lies in applying themto build flexible, reusable

software, and design patterns can show you how.
I nheritance versus Conposition

The two nost comon techniques for reusing functionality in object-oriented

systens are cl ass i nheritance and object conposition. As we've expl ai ned, class
i nheritance | ets you definetheinplenentati on of oneclassinterms of another's.
Reuse by subcl assingis oftenreferredto as white-box reuse. The term"white-box"
referstovisibility: Wthinheritance, theinternals of parent classes are often

vi sible to subcl asses

Ooj ect conpositionisanalternativetoclassinheritance. Here, newfunctionality
i s obtai ned by assenbl i ng or conposi ng obj ects to get nore conpl ex functionality.
Ohj ect conposition requires that the objects bei ng conposed have wel | -defined
interfaces. This style of reuse is called bl ack-box reuse, because no interna

details of objects are visible. Objects appear only as "black boxes."

I nheritance and conposition each have their advant ages and di sadvant ages. d ass
inheritance is defined statically at conpile-tine and is straightforward to use,
sinceit's supporteddirectly by the progranm ng | anguage. Cl ass i nheritance al so
makes it easier to nodify the inplementation being reused. Wen a subcl ass

overrides some but not all operations, it can affect the operations it inherits

as well, assuming they call the overridden operations

But cl ass inheritance has sonme di sadvantages, too. First, you can't change the
i mpl enentations i nherited fromparent classes at run-tine, because inheritance
is defined at conpile-time. Second, and generally worse, parent classes often
define at least part of their subcl asses' physical representation. Because

i nheritance exposes a subclass to details of its parent's inplenentation, it's
often said that "inheritance breaks encapsul ati on" [ Sny86]. The inpl enentation
of a subcl ass beconmes so bound up with the inplenentation of its parent class

that any change inthe parent's inplenentationw || force the subclass to change

31



Design Patterns: Elenents of Reusable Object-Oriented Software

| npl enent ati on dependenci es can cause problenms when you're trying to reuse a
subcl ass. Shoul d any aspect of the inherited inplenmentati on not be appropriate
for newprobl emdomai ns, t he parent cl ass nust berewittenor repl aced by sonet hi ng
nmore appropriate. This dependency limts flexibilityandultimately reusability.
One cure for this is to inherit only fromabstract classes, since they usually

provide little or no inplenmentation.

bj ect conposition is defined dynamically at run-time through objects acquiring
references to ot her objects. Conpositionrequires objectstorespect each ot hers'
interfaces, whichinturnrequires carefully designed interfaces that don't stop
you fromusi ng one obj ect with many others. But thereis a payoff. Because objects
are accessed solely through their interfaces, we don't break encapsul ati on. Any
obj ect can be replaced at run-tinme by another as long as it has the sane type.
Mor eover, because an object's inplenmentation will be witten in ternms of object

interfaces, there are substantially fewer inplenmentation dependencies.

Ohj ect conposition has another effect on system design. Favoring object

conposi tion over class inheritance hel ps you keep each class encapsul ated and
focused on one task. Your classes and class hierarchies will remain small and
will belesslikelytogrowintounnmanageabl e nonsters. Onthe ot her hand, a design
based on object conposition will have nore objects (if fewer classes), and the
system s behavior will dependontheir interrel ati onshi psinstead of bei ng defi ned

in one class.

That |eads us to our second principle of object-oriented design:

Favor obj ect conposition over class inheritance.

I deal Iy, you shoul dn't have to create newconponents to achi eve reuse. You should
be abletoget all thefunctionalityyouneedjust by assenbling existingconponents
t hrough obj ect conposition. But this is rarely the case, because the set of
avai |l abl e conponents i s never quiterich enoughinpractice. Reuse by i nheritance
nmakes it easier to nake new conponents that can be conposed with ol d ones.

I nheritance and object conposition thus work together.

Nevert hel ess, our experience is that designers overuse inheritance as a reuse
techni que, and designs are often made nore reusable (and sinpler) by depending
nor e on obj ect conposition. You' Il see object conposition applied again and again

in the design patterns.

Del egati on

Del egation is a way of naking conposition as powerful for reuse as inheritance

[Lie86, JZ91]. In delegation, two objects are involved in handling a request:
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a receiving object delegates operations to its delegate. This is anal ogous to
subcl asses deferring requests to parent classes. But with inheritance, an

i nherited operation can always refer to the receiving object through the this
nmenber variable in C++ and self in Smalltalk. To achieve the sane effect with
del egation, the receiver passes itself to the delegate to let the del egated

operation refer to the receiver.

For exanple, instead of meking class Wndow a subcl ass of Rectangle (because

wi ndows happen to be rectangul ar), the Wndow cl ass ni ght reuse t he behavi or of
Rect angl e by keeping a Rectangle instance variable and del egating

Rect angl e- speci fic behavior to it. In other words, instead of a Wndow being a
Rectangle, it would have a Rectangle. Wndow nust now forward requests to its
Rectangl e instance explicitly, whereas before it would have inherited those

operations.

The fol | owi ng di agramdepi cts the Wndow cl ass del egating its Area operation to

a Rectangl e instance.

Window Rectangie
rectangle
: -~
Areal) Q Araaf) 9
1 1
| width |
| height i
| :
i i
1 [}
! !
T L
returm rectangle—-Areal) return width * height

A plain arrowhead line indicates that a class keeps a reference to an instance

of another class. The reference has an optional name, "rectangle" in this case.

The mai n advantage of delegation is that it nakes it easy to conpose behaviors
at run-tine and to change the way they' re conposed. Qur wi ndow can becone circul ar
at run-time sinply by replacing its Rectangle instance with a Crcle instance,

assum ng Rectangle and G rcle have the sanme type.

Del egati on has a di sadvantage it shares with ot her techni ques t hat nake software
nore fl exi bl e t hrough obj ect conposition: Dynani c, highly paraneterized software
is harder to understand than nore static software. There are also run-tine

inefficiencies, but the human inefficiencies are nore inportant in the |long run.
Del egationis agooddesignchoiceonlywhenit sinplifiesmrethanit conplicates.
It isn't easy togiverules that tell you exactly when to use del egati on, because

how effective it will be depends on the context and on how much experience you
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have with it. Del egati on works best when it's used in highly stylized ways—t hat

is, in standard patterns.

Several design patterns use del egation. The State (338), Strategy (349), and
Visitor (366) patterns depend on it. In the State pattern, an object del egates
requests to a State object that represents its current state. In the Strategy
pattern, an object del egates a specific request to an object that represents a
strategy for carrying out the request. An object will only have one state, but
it can have many strategies for different requests. The purpose of both patterns
i s to change t he behavi or of an obj ect by changi ng t he obj ects towhichit del egates
requests. In Visitor, the operation that gets perforned on each el ement of an

object structure is always delegated to the Visitor object.

O her patterns use del egation | ess heavily. Medi ator (305) introduces an object
to nediate conmuni cati on between ot her objects. Sonetinmes the Mediator object
i mpl enent s operations sinply by forwardi ng themto t he ot her objects; other tines
it passes along a reference to itself and thus uses true del egati on. Chain of
Responsi bility (251) handl es request s by f orwar di ng t hemf r omone obj ect t o anot her
al ong a chain of objects. Sonetinmes this request carries with it areference to
the original object receiving the request, in which case the pattern is using
del egation. Bridge (171) decoupl es an abstraction fromits inplementation. If
the abstraction and a particular inplenentation are closely matched, then the

abstraction may sinply del egate operations to that inplenentation.

Del egation is an extrene exanpl e of object conposition. It shows that you can

al ways repl ace i nheritance wi th obj ect conposition as a nechani smfor code reuse.

I nheritance versus Paraneterized Types

Anot her (not strictly object-oriented) technique for reusing functionality is
t hrough paraneterized types, al so known as generics (Ada, Eiffel) and tenpl ates
(C++). This technique lets you define a type w thout specifying all the other
types it uses. The unspecified types are supplied as paraneters at the point of
use. For exanple, a List class can be parameterized by the type of elenments it
contains. Todeclarealist of i ntegers, yousupplythetype"integer" as a paraneter
to the List paraneterized type. To declare a list of String objects, you supply
the "String" type as a paraneter. The | anguage inplenentation will create a

custom zed version of the List class tenplate for each type of el enent.

Paraneteri zed types give us a third way (in addition to class inheritance and
obj ect conposition) to conpose behavior in object-oriented systens. Many desi gns
can be i npl ement ed usi ng any of these three techni ques. To paraneterize a sorting

routine by the operationit uses to conpare el enents, we coul d nake t he conpari son
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1. an operation inplemented by subcl asses (an application of Tenpl ate Met hod
(360),

2. the responsibility of an object that's passed to the sorting routine
(Strategy (349), or

3. an argunent of a C++ tenplate or Ada generic that specifies the nane of

the function to call to conpare the elenents

There are i nportant di fferences between these techni ques. Obj ect conpositionlets
you change the behavi or being conposed at run-time, but it also requires
indirection and can be less efficient. Inheritance |lets you provide default

i mpl enent ati ons for operations and | ets subcl asses override them Paraneterized
types | et you change the types that a class can use. But neither inheritance nor
paraneteri zed types can change at run-tinme. Wiich approach is best depends on

your design and inplenentation constraints.

None of the patterns in this book concerns paraneterized types, though we use
themon occasionto custom ze a pattern's C++ i npl enmentati on. Paraneterized types
aren't needed at all in alanguage |ike Snalltalk that doesn't have conpile-tine

type checki ng

Rel ati ng Run-Ti me and Conpile-Tine Structures

An object-oriented programs run-tine structure often bears little resenbl ance
toits code structure. The code structure is frozen at conpile-tinme; it consists
of classes in fixed inheritance relationships. A programis run-time structure
consi sts of rapidly changi ng net wor ks of comuni cating objects. In fact, the two
structures are largely independent. Trying to understand one fromthe other is
like trying to understand the dynam sm of |iving ecosystens fromthe static

taxonony of plants and aninmals, and vice versa

Consi der the distinction between object aggregati on and acquai ntance and how
differently they manifest thenselves at conpile- and run-times. Aggregation

i mplies that one object owns or is responsible for another object. Generally we
speak of an object having or being part of another object. Aggregation inplies

that an aggregate object and its owner have identical lifetines.

Acquai ntance inplies that an object nmerely knows of another object. Sonetines
acquai ntance is called "association" or the "using" relationship. Acquainted
obj ects may request operations of each other, but they aren't responsible for
each other. Acquai ntance i s a weaker rel ationshi p than aggregati on and suggests

much | ooser coupling between objects.

I n our diagrans, a plain arrowhead |ine denotes acquai ntance. An arrowhead |ine

with a dianmond at its base denotes aggregation
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agaregateinstance
Aggregator (> M~  Aggregatee

It's easy to confuse aggregation and acquai nt ance, because they are often

i mpl enented in the sane way. In Smalltalk, all variables are references to other
objects. There's no distinction in the progranm ng | anguage bet ween aggregati on
and acquai ntance. In C++, aggregati on can be inplenented by defining nmenber
vari abl es that are real i nstances, but it's nore conmon to definethemas pointers
or references to instances. Acquaintance is inplemented with pointers and

references as well.

Utimtely, acquai ntance and aggregation are determ ned nore by intent than by
explicit |anguage nechani sms. The distinction may be hard to see in the

compile-tinme structure, but it's significant. Aggregation relationshipstendto
be fewer and nore pernmanent than acquai ntance. Acquaintances, in contrast, are
made and renade nore frequently, sonetines existing only for the duration of an
operation. Acquai ntances are nore dynamc as well, nmaking them nore difficult

to discern in the source code.

Wth such disparity between a programs run-tine and conpile-time structures,
it's clear that code won't reveal everything about how a systemw |l work. The
system s run-tinme structure nmust beinposed nor e by t he desi gner t han t he | anguage.
The rel ationshi ps between objects and their types nust be designed with great

care, because they determ ne how good or bad the run-time structure is.

Many design patterns (in particular those that have object scope) capture the
di stinction between conpile-tinme and run-tine structures explicitly. Conposite
(183) and Decorator (196) are especially useful for building conplex run-time
structures. Observer (326) involves run-tine structures that are often hard to
under st and unl ess you knowt he pattern. Chai n of Responsibility (251) alsoresults
in conmuni cation patterns that inheritance doesn't reveal. |In general, the

run-time structures aren't clear fromthe code until you understand the patterns.

Desi gni ng for Change

The key to maxim zing reuse lies in anticipating new requirements and changes
to existing requirements, and in designing your systens so that they can evol ve

accordi ngly.

To design the systemso that it's robust to such changes, you nust consi der how
the system m ght need to change over its lifetime. A design that doesn't take
change i nto account risks naj or redesigninthe future. Those changes m ght i nvol ve

class redefinition and reinplenmentation, client nodification, and retesting.
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Redesi gn affects many parts of the software system and unantici pated changes

are invariably expensive.

Desi gn patterns hel pyou avoidthisbyensuringthat asystemcan changeinspecific
ways. Each design patternlets sone aspect of systemstructure vary i ndependent|y
of other aspects, thereby making a system nore robust to a particular kind of

change.

Here are some common causes of redesign along with the design pattern(s) that

address them

1. Creating an object by specifying a class explicitly. Specifying a class
nanme when you create an object commits youto a particular inplenmentation
instead of a particular interface. This conm tnent can conmplicate future

changes. To avoid it, create objects indirectly.

Desi gn patterns: Abstract Factory (99), Factory Method (121), Prototype
(133).

2. Dependence on speci fic operations. Wien you specify aparticul ar operati on,
you conmit to one way of satisfying a request. By avoi ding hard-coded
requests, you make it easier to change the way a request gets satisfied

both at conpile-time and at run-tine.
Design patterns: Chain of Responsibility (251), Command (263).

3. Dependence on hardware and software platform External operating system
i nterfaces and application progranmm ng interfaces (APIs) are different on
di fferent hardware and software platforns. Software that depends on a
particular platformw Il be harder to port to other platforns. It may even
be difficult to keep it upto date onits native platform It's inportant

therefore to design your systemto limt its platform dependencies.
Design patterns: Abstract Factory (99), Bridge (171).

4. Dependence on obj ect representations or i npl enentations. dientsthat know
how an obj ect is represented, stored, |ocated, or inplenented m ght need
t o be changed when t he obj ect changes. H dingthisinformationfromclients

keeps changes from cascadi ng.

Desi gn patterns: Abstract Factory (99), Bridge (171), Memento (316), Proxy
(233).

5. Al gorithm c dependencies. Algorithns are often extended, optim zed, and

repl aced duri ng devel oprment and reuse. Obj ects that depend on an al gorithm
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wi || have to change when t he al gorithmchanges. Therefore al gorithmns that

are likely to change should be isol ated.

Desi gn patterns: Builder (110), Iterator (289), Strategy (349), Tenpl ate
Met hod (360), Visitor (366).

Ti ght coupling. Classes that are tightly coupled are hard to reuse in
i solation, since they depend on each other. Tight coupling leads to
nmonol i thic systenms, where you can't change or renmpbve a cl ass without
under st andi ng and changi ng many ot her cl asses. The systembecones a dense

mass that's hard to learn, port, and nmaintain.

Loose couplingincreasestheprobabilitythat aclasscanbereusedbyitself
and t hat a systemcan be | earned, ported, nodi fi ed, and ext ended nore easily.
Desi gn patterns use techni ques such as abstract coupling and |l ayering to

promote | oosely coupl ed systens.

Design patterns: Abstract Factory (99), Bridge (171), Chain of
Responsibility (251), Command (263), Facade (208), Medi ator (305),
observer (326).

Ext endi ng functionality by subclassing. Custonizing an object by

subcl assing often isn't easy. Every new class has a fixed i npl enmentati on
overhead (initialization, finalization, etc.). Defining a subclass al so
requires an in-depth understandi ng of the parent class. For exanple,
overriding one operation nmight require overriding another. An overridden
operationm ght berequiredtocall aninheritedoperation. And subcl assi ng
can |l ead to an expl osion of classes, because you m ght have to introduce

many new subcl asses for even a sinple extension.

bj ect conmpositioningeneral and del egationinparticul ar provideflexible
alternatives toinheritance for conbi ning behavior. Newfunctionality can
be added t o an appl i cati on by conposi ng exi sti ng obj ects i n newways rat her
than by defini ng new subcl asses of existing classes. On the other hand,
heavy use of object conposition can make desi gns harder t o understand. Many
design patterns produce designs in which you can introduce custom zed

functionality just by defining one subclass and conposing its instances

with existing ones.

Design patterns: Bridge (171), Chain of Responsibility (251), Conposite
(183), Decorator (196), Cbserver (326), Strategy (349).

Inability to alter classes conveniently. Sonetines you have to nodify a
class that can't be nodified conveniently. Perhaps you need t he source code

and don't have it (as may be the case with a commercial class library).
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O maybe any change woul d require nodifying | ots of existing subcl asses.

Design patterns offer ways to nodify classes in such circunstances.
Desi gn patterns: Adapter (157), Decorator (196), Visitor (366).

These exanples reflect the flexibility that design patterns can help you build
intoyour software. Howcrucial suchflexibilityis depends onthekindof software
you're building. Let's |l ook at the rol e design patterns play in the devel opnent
of three broad classes of software: application prograns, tool kits, and

f r amewor ks.

Application Prograns

I f you' re buildinganapplicationprogramsuch as a docunent edi tor or spreadsheet,
theninternal reuse, maintainability, and extensionare highpriorities. Internal
reuse ensures that you don't design and i npl enment any nore t han you have t o. Desi gn
patterns that reduce dependenci es can increase internal reuse. Looser coupling
boosts the |i kel i hood t hat one cl ass of object can cooperate with several others.
For exanpl e, when you el i ni nat e dependenci es on speci fi c operations by isolating
and encapsul ati ng each operation, you nmake it easier to reuse an operation in
different contexts. The same thing can happen when you renove al gorithmc and

represent ati onal dependenci es too.

Desi gn patterns al so nake an applicati on nore nai ntai nabl e when they're used to
limt platform dependencies and to |ayer a system They enhance extensibility
by showi ng you howt o ext end cl ass hi erar chi es and howt o expl oi t obj ect conposition.
Reduced coupl ing al so enhances extensibility. Extending a class inisolationis

easier if the class doesn't depend on |lots of other classes.

Tool kits

Oten an application will incorporate classes fromone or nore libraries of

predefined classes called toolkits. Atoolkit is a set of related and reusabl e
cl asses designed to provide useful, general-purpose functionality. An exanple
of atoolkit is aset of collectionclasses for |ists, associative tables, stacks,
and the like. The C++ |/Ostreamlibrary i s anot her exanpl e. Tool kits don't inpose
a particular design on your application; they just provide functionality that
can hel p your applicationdoits job. They |l et you as an i npl ement er avoi d recodi ng
common functionality. Tool kits enphasi ze code reuse. They are t he obj ect-ori ented

equi val ent of subroutine libraries.

Tool kit designis arguably harder than application design, because tool kits have
to work in many applications to be useful. Mreover, the toolkit witer isn't

in a position to know what those applications will be or their special needs.
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That makes it all the nore inportant to avoi d assunpti ons and dependenci es t hat
can limt the toolkit's flexibility and consequently its applicability and

ef fectiveness.

Fr anewor ks

A framework is a set of cooperating classes that make up a reusabl e design for
a specific class of software [ Deu89, JF88]. For exanpl e, a framework can be geared
toward buil di ng graphical editors for different domains |ike artistic draw ng,
musi ¢ conposi tion, and nmechani cal CAD [ VL90, Joh92]. Another framework can hel p
you build conpilers for different progranm ng | anguages and target nachi nes
[JML92] . Yet anot her might hel p you build financial nodeling applications [ BE93].
You custom ze a franmework to a particular application by creating

application-specific subclasses of abstract classes fromthe framework.

The franework dictates the architecture of your application. It will define the
overall structure, its partitioning into classes and objects, the key
responsi bilities thereof, howt he cl asses and obj ects col | aborate, and the t hread
of control. A framework predefines these design paraneters so that you, the
application designer/inplenmenter, can concentrate on the specifics of your
application. The framework captures the design decisions that are commpntoits
appl i cati on domai n. Framewor ks t hus enphasi ze desi gn reuse over code reuse, t hough
a framework will usually include concrete subclasses you can put to work

i mredi ately.

Reuse on this | evel | eads to an inversion of control between the application and
the software on which it's based. Wen you use a toolkit (or a conventional

subroutine library for that matter), you wite the main body of the application
and cal |l the code you want to reuse. Wen you use a framework, you reuse the main
body and wite the codeit calls. You'll havetowite operations with particul ar
nanes and calling conventions, but that reduces the design decisions you have

to make.

Not only can you buil d applications faster as aresult, but the applications have
simlar structures. They are easier to maintain, and they seemnore consi stent
to their users. On the other hand, you | ose sonme creative freedom since nany

desi gn deci si ons have been nmade for you.

I f applications are hard to design, and tool kits are harder, then franeworks are
hardest of all. A franework designer ganbl es that one architecture will work for
al | applications inthe domain. Any substantive change to the franework's desi gn
woul d reduce its benefits considerably, since the franework's main contribution
to an application is the architecture it defines. Therefore it's inperative to

design the franework to be as flexible and extensible as possible.

40



Design Patterns: Elenents of Reusable Object-Oriented Software

Furthernore, because applications are so dependent on the framework for their
design, they are particularly sensitive to changes in franework interfaces. As
a framewor k evol ves, applications havetoevolvewi thit. That nakes | oose coupli ng
all the nore inportant; otherw se even a m nor change to the framework wi Il have

maj or repercussions.

The desi gnissues just di scussed are nost critical toframework design. Afranework
t hat addresses t hemusi ng design patternsisfar norelikelytoachieve highlevels
of design and code reuse than one that doesn't. Mature frameworks usually

i ncorporate several design patterns. The patterns help nmake the franmework's

architecture suitable to many different applications w thout redesign.

An added benefit cones when the framework i s docunented with the design patterns
it uses [BJ94]. Peopl e who knowt he patterns gai ninsight intothe framework faster.
Even peopl e who don't knowt he patterns can benefit fromthe structure they | end
to the framework's docunentation. Enhanci ng docunmentation is inportant for all
types of software, but it's particularly inmportant for frameworks. Frameworks
of ten pose a steep | earning curve that nust be overcone before they're useful.
Whil e design patterns might not flatten the Iearning curve entirely, they can

make it | ess steep by maki ng key el ements of the framework' s design nore explicit.

Because patterns and franmewor ks have some simlarities, people often wonder how

or even if they differ. They are different in three major ways:

1. Design patterns are nore abstract than frameworks. Franeworks can be
enmbodi ed i n code, but only exanpl es of patterns can be enbodi ed i n code.
A strength of frameworks is that they can be witten down in programming
| anguages and not only studi ed but executed andreuseddirectly. I ncontrast,
the design patterns in this book have to be inplenmented each tinme they're
used. Designpatterns al soexplaintheintent, trade-offs, and consequences
of a design.

2. Design patterns are smaller architectural elenents than franeworks. A
typi cal framework contai ns several designpatterns, but thereversei s never
true.

3. Design patterns are | ess specialized than frameworks. Frameworks al ways
have a particul ar application domai n. A graphical editor framework m ght
be used in a factory sinulation, but it won't be nistaken for a simulation
framework. In contrast, the design patterns in this catal og can be used
innearly any kind of application. Wile nore specialized design patterns
than ours are certainly possible (say, design patterns for distributed
systens or concurrent programming), even these wouldn't dictate an

application architecture Iike a framework woul d.
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Fr amewor ks ar e becom ng i ncreasingly cormon and i nportant. They are the way t hat
obj ect-oriented systens achi eve the nobst reuse. Larger object-oriented

applications will end up consisting of |ayers of frameworks that cooperate with
each other. Mst of the design and code in the application will cone fromor be

i nfluenced by the frameworks it uses.

YHow to Sel ect a Design Pattern

Wth nore than 20 design patterns in the catal og to choose from it mght be hard
to find the one that addresses a particul ar design problem especially if the
catalog is new and unfamliar to you. Here are several different approaches to

finding the design pattern that's right for your problem

1. Consi der how design patterns sol ve desi gn probl ems. Section 1.6 di scusses
how desi gn patterns hel p you find appropriate objects, deternine object
granul arity, specify object interfaces, and several other ways in which
desi gn patterns sol ve desi gn probl ens. Referring to these di scussi ons can
hel p gui de your search for the right pattern.

2. Scan Intent sections. Section 1.4 (page 18) lists the Intent sections from
all the patternsinthe catal og. Read t hrough each pattern'sintent tofind
one or nore that sound relevant to your problem You can use the
classification schene presented in Table 1.1 (page 21) to narrow your
search.

3. Study how patterns interrelate. Figure 1.1 (page 23) shows rel ationshi ps
bet ween desi gn patterns graphical ly. Studyingthese rel ati onshi ps can hel p
direct you to the right pattern or group of patterns.

4. Study patterns of |ike purpose. The catal og (page 93) has three chapters,
one for creational patterns, another for structural patterns, and a third
for behavi oral patterns. Each chapter starts off withintroductory coments
on the patterns and concludes with a section that conpares and contrasts
them These sections giveyouinsight intothesinmlaritiesanddifferences
bet ween patterns of |ike purpose.

5. Exam ne a cause of redesign. Look at the causes of redesign starting on
page 37 to see if your probleminvol ves one or nore of them Then | ook at
the patterns that help you avoid the causes of redesign.

6. Consider what shoul d be variable in your design. This approach is the
opposi te of focusi ng onthe causes of redesign. | nstead of consideri ng what
m ght force a change t o a desi gn, consi der what you want t o be abl e t o change
wi t hout redesi gn. The focus herei s onencapsul atingthe concept that vari es,
a thenme of nmany design patterns. Table 1.2 |ists the design aspect(s) that
designpatterns | et youvary independently, therebylettingyouchangethem

wi t hout redesign.
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Table 1.2: Design aspects that design patterns let you vary

YHow to Use a Design Pattern

Once you' ve picked a design pattern, how do you use it? Here's a step-by-step

approach to applying a design pattern effectively:

1. Read the pattern once through for an overview Pay particular attention
to the Applicability and Consequences sections to ensure the pattern is
right for your problem

2. o back and study the Structure, Partici pants, and Col | aborati ons secti ons.
Make sure you understand the classes and objects in the pattern and how
they relate to one another.

3. Look at the Sanple Code section to see a concrete exanple of the pattern
in code. Studying the code hel ps you |l earn howto inplenent the pattern.

4. Choose nanes for patternparticipantsthat arenmeani ngful intheapplication
context. The nanes for participants in design patterns are usually too
abstract to appear directly in an application. Nevertheless, it's useful
to incorporate the participant nane into the name that appears in the
application. That hel ps mrakethe patternnoreexplicit intheinpl enentation.
For exanpl e, i f youusethe Strategy patternfor atext conpositingalgorithm
then you m ght have cl asses SinplelLayout Strategy or TeXLayout Strategy.

5. Definethe classes. Declaretheir interfaces, establishtheir inheritance
rel ati onshi ps, and define the i nstance vari abl es that represent data and
obj ect references. Identify existing classes inyour applicationthat the
pattern will affect, and nodify them accordingly.

6. Defineapplication-specificnamesfor operationsinthepattern. Here again,
the names general |y depend on the application. Use the responsibilities
and col | aborations associated with each operation as a guide. Also, be
consi stent in your nam ng conventions. For exanple, you mght use the
"Create-" prefix consistently to denote a factory nethod.

7. Inplenent the operations to carry out the responsibilities and
col laborations inthe pattern. The I npl ementation section offers hints to
gui de you in the inplenentation. The exanples in the Sanpl e Code section

can help as well.

These are just guidelines to get you started. Over time you'll devel op your own

way of working with design patterns.

No di scussi on of howto use design patterns woul d be conpl ete wi t hout a few words
on how not to use them Design patterns should not be applied indiscrimnately.
Oten they achieve flexibility and variability by introduci ng addi ti onal |evels

of indirection, and that can conplicate a desi gn and/ or cost you sone per formance.

44



Design Patterns: Elenents of Reusable Object-Oriented Software

Adesignpatternshouldonly be appliedwhentheflexibilityit affordsisactually
needed. The Consequences sections are nost hel pful when evaluating a pattern's

benefits and liabilities.
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2. A Case Study: Design a Docunent Editor

This chapter presents a case study in the design of a

"What - You- See- | s- What - You- Get" (or "WSIWG') docunent editor called Lexi.?'
W' || see how design patterns capture solutions to design problens inLexi and
applications like it. By the end of this chapter you w || have gai ned experience
with eight patterns, |earning them byexanple.

Fi gure 2.1 depicts Lexi's user interface. AWSI WGrepresentation of the docunent
occupi es the | arge rectangul ararea in the center. The docunent can m x text and
graphics freely ina variety of formatting styles. Surrounding the docunent are
t heusual pull-down nenus and scroll bars, plus a collection of page iconsfor

junmping to a particular page in the docunent.
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Figure 2.1: Lexi's user interface

¥YDesi gn Probl ens

We will exam ne seven problens in Lexi's design:
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1. Document structure. The choice of internal representation for the docunent
af fects nearlyevery aspect of Lexi's design. Al editing, formatting,
di spl ayi ng, and textual analysisw Il requiretraversingtherepresentation.
Theway we organi ze thisinformationw || i mpact t he desi gn of the rest ofthe
application.

2. Formatting. How does Lexi actually arrange text and graphics into |ines
andcol ums? What objects are responsible for carrying out
differentformatting policies? How do these policies interact with
t hedocunent's internal representation?

3. Enbellishingthe user interface.Lexi's user interfaceincludes scroll bars,
borders, and drop shadowst hat enbellish t he WYSI WG docunent interface.
Such enbel | i shments arelikely to change as Lexi's user interface evol ves.
Hence it'sinportant to be able to add and renpve enbel lishnents easily
wi t hout af fecting the rest of the application.

4. Supporting multiple | ook-and-feel standards.Lexi should adapt easily to
di fferent | ook-and-feel standardssuch as Motif and Presentati on Manager
(PM wi thout major nodification.

5. Supporting multiple w ndowsystens. D fferent | ook-and-feel standards are
usual l'y i mpl enented on differentw ndow systens. Lexi's design should be
as independent of the w ndowsystem as possi bl e.

6. User operations.Users control Lexi through various user interfaces,

i ncl udi ngbuttons and pul | -down nenus. The functionality behind
theseinterfacesis scatteredthroughout the objectsintheapplication.The
chal |l enge here is to provide a uniformnechani smboth foraccessing this
scattered functionality and for undoing its effects.

7. Spelling checking and hyphenati on. How does Lexi support anal ytical
operations such as checking form sspell ed words and det erm ni ng
hyphenati on poi nts? How can weni nim ze the nunber of classes we have to

nodi fy to add a newanal ytical operation?

We di scuss these design problens in the sections that follow Eachproblem has
an associ at ed set of goal s pl us constrai nts on howweachi eve t hose goal s. W expl ain
the goals and constraints in detail before proposing a specific solution. The

probl emandits solutionwi |l illustrateoneor noredesignpatterns. The di scussion

for eachproblemwi ||l culmnate in a brief introduction to the rel evantpatterns.

¥YDocunent Structure

A docunent is ultinmately just an arrangenment of basic graphical el enents such as
characters, lines, polygons, and ot her shapes. Theseel enents capture the total
i nformati on content of the document. Yet anauthor often views t hese el enents not

i ngraphical ternms but i ntermsof the docunent's physical structure—lines, colums,
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figures,tables, and other substructures.2 n turn, these substructures have

substructures of theirown, and so on.

Lexi's user interface should | et users nanipul ate thesesubstructures directly.
For exanple, a user should be able to treat adiagramas a unit rather than as
a col l ection of individual graphicalprimtives. The user shoul d be able to refer
to atabl e as a whol e, not as an unstructured mass of text and graphi cs. That hel ps
make theinterface sinple and intuitive. To give Lexi's inplenentationsimlar

qualities, we'll choose an internal representation thatnmatches the docunent's

physi cal structure.

In particular, the internal representation should support thefoll ow ng:

Mai nt ai ni ng t he docunent's physical structure, that is, thearrangenent of
text and graphics into lines, colums, tables, etc.

Cenerating and presenting the docunent visually.

Mappi ng positionsonthe displaytoelementsintheinternal representation.
This lets Lexi determ ne what the user isreferring to when he points to

sonething in the visual representation.

In addition to these goals are sonme constraints. First, we shouldtreat text and
graphics uniformy. The application's interface | etsthe user enbed text within
graphics freely and vice versa. W shoul davoid treating graphics as a speci al
case of text or text as a special case of graphics; otherwise we'll end up with
redundant formatting andmani pul ati on nechani sns. One set of nechani snms shoul d

suffice forboth text and graphics.

Second, our inplenmentation shoul dn't have to di stinguish betweensingl e el enents
and groups of elements intheinternal representation.Lexi should be abletotreat
simpl e and conpl ex el ementsuni formy, thereby allowi ng arbitrarily conpl ex

docunments. The tenthelenent in line five of colum two, for instance, could be
a singl echaracter or anintricate di agramw th many subel enents. As | ong as weknow
this element can draw itself and specify its dinensions, itsconplexity has no

bearing on how and where it shoul d appear on thepage.

Opposi ng t he second constraint, however, is the need to anal yze thetext for such
things as spelling errors and potential hyphenationpoints. Often we don't care
whet her t he el enent of alineisasinpleor conpl ex obj ect. But soneti nes an anal ysi s
depends on t he obj ect sbei ng anal yzed. It makes littl e sense, for exanpl e, to check
thespel i ng of a pol ygon or to hyphenate it. The i nternal representation's design

shoul d take this and other potentiallyconflicting constraints into account.
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Recur si ve Conposition

A common way to represent hierarchically structured information isthrough a
techni que call ed recursive conposition, whichentails building increasingly
conpl ex el ements out of sinpler ones.Recursive conposition gives us a way to
conpose a docunent out ofsinple graphical elenents. As a first step, we cantile
a set ofcharacters and graphics fromleft toright toformalinein thedocunent.
Then mul tiple lines can be arranged to forma columm, nultiple colums can form

a page, and so on (seeFigure 2.2).

characters space image composite [row)

s ™
Fi "y

composite (column)

Figure 2.2: Recursive conposition of text and graphics

We can represent this physical structure by devoting an object to eachi nportant
el enent. That includes not just the visible elements |ikethe characters and
graphi cs but the invisible, structural el ements aswell —the |lines and t he col um.

The result is the object structureshown in Figure 2.3.

49



Design Patterns: Elenents of Reusable Object-Oriented Software

composite
(colummn)

composite composite

{row)

Figure 2.3: Object structure for recursive conposition oftext and graphics

By using an object for each character and graphical elenment in thedocument, we
promote flexibility at the finest |evels of Lexi'sdesign. W can treat text and
graphics uniformy with respect to howhey are drawn, formatted, and enbedded
wi thin each other. W canextend Lexi to support new character sets without

di sturbing otherfunctionality. Lexi's object structure mmnmics the

docunent ' sphysi cal structure.

Thi s approach has two inportant inplications. The first is obvious: The objects
need correspondi ng classes. The second inplication, whichmy be | ess obvious,
is that these cl asses nmust have conpati bl ei nterfaces, because we want to treat
the objects uniformy. The way tomake interfaces compatible in a | anguage |ike

C++ is to relate thecl asses through inheritance.

d yphs

We' || define a @ yph abstract class for allobjects that can appear in a docunent
structure.® Its subclasses define bothprimtive graphical elenents (like

characters and i mages) andstructural elements (like rows and colums). Figure
2.4 depicts a representative partof the dyph class hierarchy, and Table 2.1

presents the basic glyph interfacein nore detail using Ct++ notation.*
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Glyph ot

Draw{Window)
Intersects{Paint)
Inzert{Glyph, int)

A

for all & in children
if e—=Intersacts(p) return trus

w==D rawChamx:ler{u:H

children
Character Rectangle Row
Draw{Window w)  &-q-—- ! Drawi...) DrawiWindow w) Gr-—=-—-—-—q=-—-—---=
Intersects(Paint p) § ! Intersects...) Intersects(Point pj)~ @-—-—- 1 -
L ! InsertiGlyph g, int i) 0 !
char ¢ I | L |
1 | ! I
L Polygon E !
! | insert g into i
return true if point p \ Drawf...) children at position i '
intersects this character ! Intersects(...) !
I Il
|

faorall ¢ in children
ensure ¢ is pesitioned
correctly;
c—=Draw(w)

Figure 2.4: Partial dyph class hierarchy

appear ance virtual void Draw( W ndow*)
virtual void Bounds(Rect &)

hit detection virtual bool Intersects(const Point&)

structure virtual void Insert(d yph*, int)
virtual void Remove(d yph*)
virtual dyph* Child(int)
virtual G yph* Parent()

Table 2.1: Basic glyph interface

A yphs have three basic responsibilities. They know (1) how to draw hensel ves,

(2) what space they occupy, and (3) their children andparent.

A yph subcl asses redefine the Draw operation to renderthensel ves onto a w ndow.
They are passed a reference to a Wndowobject in the call to Draw. The W ndow
cl ass definesgraphi cs operations for rendering text and basic shapes i n a wi ndow

on thescreen. A Rectangle subclass of dyph mght redefinebDraw as foll ows:
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voi d Rectangl e:: Draw (W ndow w) {
w- >Dr awRect (_x0, _y0, _x1, _yl);

where x0, _y0, _x1, and _ylare data nenbers of Rectangl e that defi ne two opposi ng
corners ofthe rectangl e. DrawRect i s the Wndowoperationthat makest he rectangl e

appear on the screen.

Aparent gl yphoftenneedstoknowhowrnuch space a chil d gl yph occupi es, for exanpl e,
to arrange it and other glyphs in aline so that none overl aps(as shown in Figure
2.3). TheBounds operation returns the rectangul ar area that the gl yphoccupi es.
It returns the opposite corners of the small est rectangl e thatcontains the glyph.
d yph subcl asses redefine this operation to return therectangul ar area i n which

they draw.

The Intersects operation returns whet her a specified pointintersects the glyph.
Whenever the user clicks somewhere in thedocurment, Lexi calls this operationto
det ermi ne whi ch gl yph orgl yph structure i s under the nouse. The Rectangl e cl ass
redefinesthis operationto conpute theintersectionof therectangle and thegiven

poi nt .

Because gl yphs can have children, we need a conmon interface toadd, renove, and
access those children. For exanple, a Row s childrenare the glyphs it arranges
into a row. The Insertoperation inserts a glyph at a position specified by an
i ntegerindex.® The Renpveoperation renmoves a specified glyph if it is indeed a
child.

The Child operation returns the child (if any) at the givenindex. dyphs |like
Row t hat can have chil dren should use Childinternally instead of accessing the
child data structure directly. That wayyou won't have to nodify operations |like
Draw that iteratethrough the children when you change the data structure from
say, an arraytoalinked list. Simlarly, Parent provides a standard i nterfaceto
the gl yph's parent, if any. Ayphs in Lexi store a reference totheir parent, and

their Parent operation sinply returns thisreference.

Conposite Pattern

Recur sive conposition is good for nore than just docunments. W can useit to

represent any potentially conplex, hierarchical structure. TheConposite (183)
pattern captures the essence ofrecursive conposition in object-oriented terns.
Now woul d be a goodtine to turn to that pattern and study it, referring back to

thi sscenari o as needed.
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YFormatting

W' ve settled on a way to represent the docunent's physical structure. Next, we
need to figure out how to construct a particul ar physical structure, one that
corresponds to a properlyformatted docunent. Representation and formatting are
distinct: Theability to capture the docunent's physical structure doesn't tell
ushow to arrive at a particular structure. This responsibility restsnostly on
Lexi. It must break text into lines, lines into colums, and so on, taking into
account the user's higher-1level desires. Forexanple, the user nmight want to vary
margi n wi dt hs, i ndentation, andtabul ati on; single or doubl e space; and probably
many other formattingconstraints.®Lexi'sformatting algorithmnust take all of

these into account.

By the way, we'll restrict "formatting" to nean breaking a collection ofglyphs
into lines. In fact, we'll use the terms "formatting" and"linebreaki ng"
i nt erchangeabl y. The techni ques we' || di scuss appl yequal |y wel | to breaki ng |ines

into colums and to breaking col ums i ntopages.

Encapsul ating the Formatting Al gorithm

Theformatting process, withall itsconstraintsanddetails, isn't easytoautonate.
There are many approaches to the problem and peopl e have cone upwith a variety
of formatting algorithms with different strengths andweaknesses. Because Lexi
is a WSIWG editor, an inportant trade-off toconsider is the bal ance between
formatting quality and formatti ng speed. Wewant general | y good response fromt he
editor without sacrificing howgoodthe docunent | ooks. This trade-off is subject
to many factors, not all ofwhich can be ascertai ned at conpil e-ti ne. For exanpl e,
the user mghttolerateslightlyslower responseinexchange for better formatting.
Thattrade-of f m ght make an entirely different formatting al gorithm

nor eappropriate than the current one. Another, nore

i mpl enent ati on-driventrade-off bal ances formatti ng speed and storage
requirenments: It may bepossible to decrease formatting tine by caching nore

i nformation.

Because formatting al gorithns tend to be conplex, it's al so desirabl eto keep them
wel | - cont ai ned or—better yet—conpletely independentof the docunent structure.

I deal | y we coul d add a new ki nd of G yphsubcl ass without regardto the formatting
al gorithm Conversely, adding a new formatting algorithm shouldn't require

nodi fyi ng exi stinggl yphs.

These characteristics suggest we shoul d design Lexi so that it'seasy to change
the formatting algorithmat l|east at conpile-time, ifnot at run-tine as well.

We can isolate the algorithmand nake iteasily replaceable at the sanme tine by
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encapsul ating it in an object. Mre specifically, we'll define a separate cl ass
hi erarchy for objectsthat encapsulate formatting al gorithns. The root of the

hi erarchy willdefine an interface that supports a w de range of

formattingal gorithns, and each subclass will inplenment the interface to carryout
a particular algorithm Then we can introduce a G yph subcl assthat will structure

its children automatically using a given al gorithnobject.

Conposi tor and Conposition

W'l | define a Conpositor class for objectsthat can encapsul ate a formatting

al gorithm Theinterface (Tabl e 2.2) | et st he conpositor knowwhat gl yphs to f or mat
and whento do the formatting. The glyphs it formats are the children of a speci al
A yph subcl ass cal | ed Conposition. Aconposition gets an instance of a Conpositor
subcl ass (speci al i zedf or a particul ar |inebreakingalgorithm whenit is created,
andit tells the conpositor to Conpose its gl yphs whennecessary, for exanpl e, when
the user changes a docunent.Figure 2.5 depicts the rel ationshi ps between the

Composi ti on and Conpositor classes.

what to format voi d Set Conposi ti on(Conposition*)

when to format virtual void Conpose()

Table 2.2 Basic conmpositor interface

Glyph
Inserf{Glyph, inth

Ztr\ Compaositar

hifldd .. COrpOsilo
ok E{; Composition b P i -

Composa()
Insert{Glyph g, int i) T M SefCamposition|)
|
I
1

composition

Glyph::insert(g, i) = | | |

composilor.Compose) ArrayCompositor | | TeXCompositor | | SimpleCompositor

Compose() Composel) Compose()

Figure 2.5: Conposition and Conpositor class rel ationships

An unformatted Conposition object contains only the visibleglyphs that nmake up

the docunent's basic content. |t doesn't containglyphs that deternine the

54



Design Patterns: Elenents of Reusable Object-Oriented Software

docunent' s physi cal structure, such asRow and Col utm. The conpositionisinthis
state just after it'screated and initialized with the glyphs it should fornat.
Whent he conpositionneeds fornmatting, it callsits conpositor' sConpose operation.
The conpositor in turn iteratesthrough the conposition's children and inserts
new Rowand Col urmgl yphs accordingtoits |inebreakingal gorithm’Figure 2.6 shows
the resulting objectstructure. G yphs that the conpositor created and inserted

i ntot he object structure appear with gray backgrounds in the figure.

compositor-

compoéi:t:;on
generated
alyphs
row o900

G @D oo

Figure 2.6: Object structure reflectingconpositor-directed |Iinebreaking

Each Conpositor subclass can inplement a different |inebreaking algorithm For
exanpl e, a Si npl eConposi tor m ght do a qui ck pass wi t hout regard f orsuch esoterica
as the docunent's "color." Good col or nmeans havi ng an evendi stri bution of text
and whit espace. A TeXConpositor would i nplenent thefull TeX al gorithm][Knu84],

whi ch t akes t hings |i ke col or i nto accountin exchange for | onger formattingtines.

The Conpositor-Conposition class split ensures a strong separati onbet ween code
that supports the docunment's physical structure and thecode for different
formatting al gorithns. W can add new Conposi t orsubcl asses wi t hout touching the
gl yph cl asses, and vice versa. Infact, we can change the |inebreaking al gorithm
at run-time by adding asingle SetConpositor operation to Conposition's basic

gl yphi nterface.
Strategy Pattern

Encapsul ating an al gorithminanobject istheintent of the Strategy (349) pattern.
The key participants in thepattern are Strategy objects (which encapsul ate

different al gorithms)and the context in which they operate. Conpositors are
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strategies;they encapsulate different formatting algorithms. A conposition is

thecontext for a conpositor strategy.

The key to applying the Strategy pattern is designing interfaces forthe strategy
and its context that are general enough to support arange of algorithms. You
shoul dn't have to change the strategy orcontext interface to support a new
algorithm In our exanple, thebasic dyph interface's support for child access,
insertion, andrenoval is general enough to | et Conpositor subcl asses change

t hedocunment' s physical structure, regardl ess of the algorithmthey use todo it.
Li kewi se, the Conmpositor interface gives conpositions whateverthey need to

initiate formatting.

YEnbel i shing the User Interface

W consider two enbel lishnents in Lexi's user interface. Thefirst adds a border
around the text editing area to demarcate t he pageof text. The second adds scrol |
bars that let the user viewdifferentparts of the page. To neke it easy to add
and renove theseenbel lishments (especially at run-tinme), we shouldn't use

i nheritanceto add themto the user interface. We achieve the nost flexibilityif
ot her user interface objects don't even know the enbel | i shnments arethere. That

will let us add and renove the enbellishments withoutchangi ng other classes.

Transparent Encl osure

From a programi ng point of view, enbellishing the user interface involves
extendi ng exi sting code. Using inheritance to do such extension
precl udesr earrangi ng enbel | i shnents at run-tine, but an equal ly serious probl em

is the explosion of classes that can result froman inheritance-basedapproach.

We could add a border to Conposition by subclassing it to yield

aBor der edConposition class. O we could add a scrolling interface inthe same way
to yield a Scroll abl eConposition. |If we want both scrollbars and a border, we
m ght produce a BorderedScrol | abl eConposition,and so forth. In the extrene, we
end up with a class for everypossi bl e conmbi nati on of enbel li shnments, a sol ution

that qui ckl ybecomes unwor kabl e as the variety of enbellishnents grows.

bj ect conposition offers a potentially nore workabl e and fl exi bl eext ension

mechani sm But what objects do we conpose? Since we knowwe're enbellishing an
exi sting gl yph, we coul d nake the enbel | i shnentitsel f an obj ect (say, aninstance
of class Border). Thatgives us two candi dates for conposition, the gl yph and the
border. Thenext stepistodeci de who conposes whom W coul d have t he bor dercontain
t he gl yph, whi ch makes sense given that the border willsurround the glyph on the

screen. Or we coul d do the opposite—putthe border into the gl yph—but then we nust
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make nodi fications to thecorresponding G yph subclass to nake it aware of the
border. Qur firstchoice, conposing the glyph in the border, keeps the

bor der-drawi ngcode entirely in the Border class, |eaving other classes al one.

VWhat does the Border class |ook |ike? The fact that borders have anappearance
suggests they should actually be glyphs; that is, Bordershould be a subcl ass of
d yph. But there's a nore conpel lingreasonfor doingthis: dients shouldn't care
whet her gl yphs have borders ornot. They shoul dtreat gl yphsuniformy. Whenclients
tell aplain,unborderedglyphtodrawitself, it shoul ddo sow thoutenbellishment.
I f that gl yph is conposed in a border, clientsshouldn't have to treat the border
containing the glyph anydifferently; they just tell it to drawitself as they
told the plainglyph before. This inplies that the Border interface matches the
A yphinterface. W subclass Border from d yph to guarantee thisrelationship.

Al this leads us to the concept of transparent encl osure, which conbines the

notions of (1) single-child (orsingle-conponent) conposition and (2)

conpati bl einterfaces. Cients generally can't tell whether they're dealing

wi t ht he conponent or its enclosure (i.e., the child' s parent),especially if the
encl osure sinply del egates all its operations to itsconponent. But the encl osure
can al so augnment t he conponent' sbehavi or by doi ng work of its own before and/ or
after del egating anoperation. The encl osure can also effectively add state to

t heconponent. We'll see how next.

Monogl yph

We can apply the concept of transparent enclosure to all glyphs thatenbellish
ot her gl yphs. To nake t hi s concept concrete, we' || defi ne asubcl ass of G yph cal | ed
Monod yph to serve as an abstractclass for "enbel li shment glyphs," |ikeBorder
(see Figure 2.7).Mnod yph stores a reference to a conponent and forwards all
requests toit. That makes Monod yphtotal ly transparent to clients by defaul t. For

exanpl e, Monod yph inplenents the Draw operation like this:

voi d MonoQ yph:: Draw (W ndow w) {
_conponent - >Dram w) ;
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Glyph

Draw{Window!)

.

L4 MonoGlyph

component
Draw(Window}
Border Scroller
Drraw{Window) Drraw{Window)
DrawBorder[Window)

Figure 2.7: Mnod yph class rel ati onships

Monod yph subcl asses rei npl enent at | east one of these forwardi ngoperations.
Border::Draw, for instance, first invokes the parentclass operation

Monod yph: : Draw on the conponent to | et theconponent do its part—that is, draw
everything but the border. ThenBorder::Draw draws the border by calling a

privateoperation called DrawBorder, the details of which we'llomt:

voi d Border::Draw (W ndow w) {
Monod yph: : Dram w) ;
Dr awBor der (W) ;

Noti ce how Border::Draw effectively extends the parentclass operation to draw
the border. This is in contrast to nerelyreplacing the parent cl ass operation,
which would onmit the call toMonod yph:: Draw.

Anot her Monod yph subcl ass appears in Figure 2.7. Scroller is a Monod yph that
draws its conmponent in differentlocations based on the positions of two scroll
bars, which it adds asenbel |l i shments. When Scrol |l er draws its conponent, it tells
t hegraphics systemto clip to its bounds. Cipping parts of the conponentthat

are scrolled out of view keeps them from appearing on the screen.

Now we have all the pieces we need to add a border and a scrollinginterface to
Lexi'stext editingarea. W conposet he exi stingConpositioninstanceinaScroller
instance to add the scrollinginterface, and we conpose that i n a Border instance.

The resul tingobject structure appears in Figure 2.8.
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border

scroller

Figure 2.8: Enbellished object structure

Not e t hat we can rever se t he order of conposition, puttingthebordered conposition
into the Scroller instance. In that case theborder would be scrolled along with
the text, which nay or may not bedesirable. The point is, transparent enclosure
makes it easy toexperinent with different alternatives, andit keeps clients free

of enbel | i shnment code

Not e al so how t he border conposes one glyph, not two or nore. This isunlike
conposi tions we've defined so far, in which parent objects wereal |l owed to have
arbitrarily many children. Here, putting a borderaround sonething inplies that
"somet hing" is singular. W coul dassi gn a meani ng to enbel | i shing nore than one
object at atime, butthen we'd have to m x nmany ki nds of conpositioninwththe
noti on of enbel |l i shment: row enbellishment, colum enbellishnment, and so
forth. That won't help us, since we already have classes to do those kinds

of conpositions. So it's better to use existing classes for conpositionand add
new cl asses to enbel lish the result. Keeping enbellishnmentindependent of other
ki nds of conposition both sinplifies theenbellishment classes and reduces their

nunber. It also keeps us fronreplicating existing conposition functionality.

Decorator Pattern

The Decorator (196) pattern captures class and objectrel ationshi ps that support

enmbel | i shment by transparent encl osure. The term "enbel lishment” actually has
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br oader meani ng than whatwe' ve considered here. In the Decorator pattern,

ermbel | i shment refersto anything that adds responsibilities to an object. W can
t hi nkfor exanpl e of enbel lishing an abstract syntax tree with semanticacti ons,
afinite state automaton with newtransitions, or a networkof persistent objects
withattribute tags. Decorator generalizes theapproach we' ve used i n Lexi to nake

it more widely applicable.

YSupporting Miultiple Look-and-Feel Standards

Achi eving portability across hardware and software platforms is amjor problem
in system design. Retargeting Lexi to a newpl atform shouldn't require a nmajor
overhaul, or it wouldn't be worthretargeting. W shoul d make porting as easy as

possi bl e.

One obstacle to portability is the diversity of |ook-and-feel standards, which
are intended to enforce uniformty between applicati ons. Thesestandards define
guidelines for how applications appear and react to theuser. \Wile existing
standards aren't that different fromeach other, people certainly won't confuse
one for the other—Mtif applications don'tlook and feel exactly like their
counterparts on other platforns, and viceversa. An application that runs on nore

t han one pl at formmust conformtothe user interface style gui de on each platform

Qur design goals are to make Lexi conformto nultiple existinglook-and-feel
standards and to make it easy t o add support for newst andards as they (i nvari ably)
energe. W al so want our design tosupport the ultimate in flexibility: changing

Lexi's |l ook and feelat run-tine.
Abstracting Object Creation

Everything we see and interact with in Lexi's user interface is aglyph conposed
i nother, invisibleglyphslikeRowand Col utm. Thei nvi si bl e gl yphs conpose vi si bl e
ones |ike Button and Character and | ayt hemout properly. Style guides have nuch

"

to say about the | ook andfeel of so-called "w dgets," another termfor visible
gl yphs |ikebuttons, scroll bars, and nenus that act as controlling elenents in
auser interface. Wdgets mght use sinpler glyphs such as characters,circles,

rectangl es, and pol ygons to present data.

W'l |l assume we have two sets of w dget glyph classes with which toinplenent

mul ti pl e | ook-and-feel standards:

1. A set of abstract G yph subclasses for each category of wi dgetglyph. For

exanpl e, an abstract cl ass Scrol I Bar wi | | augnment t he basi cgl yphinterface
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to add general scrolling operations; Button is anabstract cl ass that adds
button-oriented operations; and so on.

2. A set of concrete subclasses for each abstract subclass thatinpl ement
di fferent | ook-and-feel standards. For exanple, ScrollBarm ght have
Moti f Scrol | Bar and PMScrol | Bar subcl asses that inplenentMtif and

Presentati on Manager-style scroll bars, respectively.

Lexi must distinguish between w dget gl yphs for different | ook-and-feelstyles.
For exanpl e, when Lexi needs to put a buttoninits interface,it nust instantiate
a d yph subcl ass for the right style of button(MtifButton, PMButton, MacButton,

etc.).

It's clear that Lexi's inplenmentation can't do this directly, say,using a
constructor call in C++. That woul d hard-code the button of aparticular style,
making it inpossible to select the style atrun-time. W' d al so have to track down
and change every suchconstructor call to port Lexi toanother platform Andbuttons
areonly one of a variety of widgets in Lexi's user interface.Littering our code
with constructor calls to specific |ook-and-feelclasses yields a naintenance
ni ght mare—m ss just one, and you couldend up with a Motif nenu in the m ddl e of

your Mac application.

Lexi needs a way to determine the | ook-and-feel standard that's beingtargeted
inorder tocreate the appropriate wi dgets. Not only nust weavoi d maki ng explicit
constructor calls; we nmust al so be able torepl ace an entire wi dget set easily.
We can achi eve both by abstracting the process of object creation. An exanple

willillustrate what we nean.

Factori es and Product C asses

Normal |y we mi ght create aninstance of a Motif scroll bar glyph with thefollow ng

C++ code:
Scrol I Bar* sb = new MtifScroll Bar;

This is the kind of code to avoid if you want to minim zeLexi's | ook-and-feel

dependenci es. But suppose weinitialize sb as foll ows:
Scrol |l Bar* sb = gui Factory->CreateScrol | Bar();

where gui Factory is an instance of aMtifFactory class. CreateScrol | Barreturns
a new i nstance of the proper ScrollBar subclass for thel ook and feel desired,
Mtif in this case. As far as clients areconcerned, the effect is the sane as
callingthe MotifScroll Barconstructor directly. But there'sacrucial difference:

There' sno | onger anything in the code that nmentions Motif by name. Thegui Factory
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obj ect abstracts the process of creatingnot just Mtif scroll bars but scroll
bars for anyl ook-and-feel standard. And gui Factory isn't limitedto producing
scroll bars. It can manufacture a full range of w dgetglyphs, including scroll

bars, buttons, entry fields, menus, andso forth.

Al'l thisis possiblebecause MotifFactory is asubcl ass of GUl Factory, an abstract

class that defines ageneral interface for creating w dget glyphs. It includes
operationslike CreateScrol | Bar and Creat eButtonfor i nstantiatingdifferent kinds
of wi dget gl yphs. Subcl asses of GUl Factory inpl ement these operations to return
gl yphs such asMbti f Scrol | Bar and PMBut t on t hat i npl enment a parti cul ar | ook andf eel .

Figure 2.9 showsthe resulting class hierarchy for gui Factory objects.

GUIFactory

CreateScroliBary)
CreateBution(]
CreateMeaniy)

;

MotifFactory PMFactory MacFactory

CreateScrolBar{) &-f------
CreateButton{) O-F==-
CreateMenu) -

CreateScroliBan) ©-p------ I CreateScroliBar() ©-r------
CreateButton() ~ ©-f--- CreateButton() @ —--
CreatehMenu() =l o Createbdenu) o-r

retum naw MolifMenu return new PRMenu ratum new MachMenu

]

return new MotifButton return new PMButton return new MacButton

rellrn new MmsfSCrDIIHa\P" return new PMScrollBar return new MacScrolliBar

Figure 2.9: QU Factory class hierarchy

W say that factories create product objects. Moreover, the products that afactory
produces are related to oneanother; in this case, the products are all w dgets
for the sanel ook and feel. Figure 2.10 shows sone of the product cl asses needed

to make factories workfor w dget glyphs.
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ScroliBar Bution Menu

ScrofiTofint) FPress(] Papuof)

__________ —

MotitScrollBar MacScrollBar MotifButton MacButton MotitMenu MacMenu

SeroliTolnl) SerallTa{int) Press() Pressi) Popupl} Papup{)
PMScrollBar PMButton PMMenu
ScraliTolint) Press() Popupt}

Figure 2.10: Abstract product classes and concrete subcl asses

The | ast question we have to answer is, Were does the QU Factoryinstance cone
fron? The answer is, Anywhere that's convenient. Thevariable gui Factory could
be a global, a static nenber of awell-known class, or even a local variable if
the entire user interface iscreated within one class or function. There's even
a desi gn pattern, Singleton (144), for managi ng wel | - known, one- of - a- ki ndobj ect s
like this. The inportant thing, though, is to initializeguiFactory at a point
inthe programbefore it's ever usedto create w dgets but after it's clear which

| ook and feel isdesired.

If the I ook and feel is known at conpile-tinme, then gui Factorycan be initialized

wi th a sinpl e assi gnment of a newfactory i nstanceat t he begi nni ng of the program
GUl Factory* gui Factory = new MtifFactory;

I f the user can specify the | ook and feel with a string nane atstartup time, then

the code to create the factory might be

QUI Fact ory* gui Factory;
const char* styleNane = getenv("LOOK_AND FEEL");
/] user or environment supplies this at startup
if (strcnp(styleName, "Mtif") == 0) {
gui Factory = new MotifFactory;
} else if (strcnp(styleNane, "Presentation_Manager") == 0) {

gui Factory = new PMractory;

63



Design Patterns: Elenents of Reusable Object-Oriented Software

} else {

gui Factory = new Defaul t QU Factory;

There are nore sophisticated ways to select the factory at run-tine. For exanpl e,
you could maintain aregistry that maps strings tofactory objects. That lets you
regi ster instances of new factorysubcl asses w t hout nodi fyi ng exi sti ng code, as
t he precedi ng approach requires. And you don't havetolink all platformspecific
factoriesintothe application. That's inportant, because it m ght not bepossible

to link a MtifFactory on a platformthat doesn't supportMtif.

But the point is that once we' ve configured the applicationwi th theright factory
object, its look and feel is set fromthen on. If wechange our m nds, we can
reinitialize gui Factory with afactory for a different | ook and feel and then
reconstruct theinterface. Regardl ess of how and when we decide to

initializegui Factory, we know that once we do, the application cancreate the

appropriate | ook and feel w thout nodification.

Abstract Factory Pattern

Factories and products are the key participants in the Abstract Factory (99)
pattern. This pattern captures howmo create fanmilies of rel ated product objects
wi thout instantiatingclasses directly. It's npst appropri ate when t he nunber and
gener al ki nds of product objects stay constant, and there are differences

i nspecific product famlies. W choose between famlies by instantiatinga
particul ar concretefactoryandusingit consistentlytocreateproductsthereafter.
We can also swap entire famlies of products byreplacing the concrete factory
with an instance of a different one. The Abstract Factory pattern's enphasis on
fam |i es of product sdi stingui shesit fromother creational patterns, whichinvol ve

only onekind of product object.

¥Supporting Multiple Wndow Syst ens

Look and feel is just one of many portability issues. Another is thew ndow ng
environnent in which Lexi runs. A platformi s wi ndow systencreates the illusion
of multiple overl appi ng wi ndows on a bitmappeddi splay. It manages screen space
for wi ndows and rout es i nput to themfront he keyboard and nobuse. Several inportant
and | argel y i nconpati bl e wi ndowsyst ens exi st t oday (e. g., Maci ntosh, Presentation
Manager, Wndows, X).We'd like Lexi to run on as many of them as possible for

exactly thesane reasons we support multiple | ook-and-feel standards.
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Can W Use an Abstract Factory?

At first glancethis may | ookl ike another opportunitytoapplytheAbstract Factory
pattern. But the constraints for wi ndow systemportabilitydiffer significantly

fromthose for |ook-and-feel independence.

I n applying the Abstract Factory pattern, we assumed we woul d defi nethe concrete
wi dget gl yph cl asses for each | ook-and-feel standard. That neant we coul d derive
each concrete product for a particularstandard (e.g., MotifScroll Bar and
MacScrol | Bar) from an abstract product class (e.g., ScrollBar). But suppose we
al ready have several class hierarchies fromdifferent vendors, one for each

| ook- and-feel standard. O course, it's highly unlikely these hierarchies
areconpatible in any way. Hence we won't have a common abstract productclass for
each kind of wi dget (ScrollBar, Button, Menu, etc.)—and theAbstract Factory
pattern won't work without those crucial classes. W have to make the different
wi dget hi erarchies adhere to a commpnset of abstract product interfaces. Only
then could we declare theCreate... operations properly in our abstract

factory' sinterface.

We sol ved this problemfor w dgets by devel opi ng our own abstract andconcrete
product classes. Nowwe're faced with a simlar problemwhenwe try to make Lexi
wor k on exi sti ngw ndowsyst ens; nanely, di fferent wi ndowsyst ens have i nconpati bl e
progranmm ng interfaces. Things are a bit tougher this tinme, though, because we

can't afford toinplement our own nonstandard wi ndow system

But there's a saving grace. Li ke | ook-and-feel standards, wi ndowsystemi nterfaces
aren't radically different fromone another, becauseall w ndow systens do

generally the sane thing. W need a uni form setof w ndowi ng abstractions that
lets us take different wi ndow system nplenmentations and slide any one of them

under a common interface.

Encapsul ati ng | npl ement ati on Dependenci es

InSection2.2weintroduced a Wndowcl ass for di splayi ngaglyphor gl yphstructure
on the display. We didn't specify the wi ndow systemthatthis object worked with,
because the truth is that it doesn't conefromany particul ar wi ndow system The

W ndow cl ass encapsul atesthe things w ndows tend to do across w ndow systens:

They provi de operations for drawi ng basic geonetric shapes.
They can iconify and de-iconify thensel ves.
They can resize thensel ves.

They can (re)draw their contents on demand, for exanple, when theyare
de-iconifiedor when an over| apped and obscur ed porti on of theirscreenspace

i s exposed.
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The W ndow cl ass nust span the functionality of wi ndows fromdifferentw ndow

systens. Let's consider two extrene phil osophies:

1. Intersection of functionality. The Wndow class interface provides only
functionality that's commonto all w ndow systens. The problemwith this
approach is thatour Wndow i nterface wi nds up being only as powerful as
the | eastcapabl e wi ndow system W can't take advantage of nore
advancedf eatures even i f nost (but not all) w ndow systens support them

2. Union of functionality.Create an interface that incorporates the
capabilities of allexistingsystens. Thetrouble hereisthat theresulting
interface maywel | be huge and i ncoherent. Besides, we'll have to change
it (andLexi, which depends onit) anytine a vendor revi sesits w ndowsystem
interface.

Neither extrenme is a viable solution, so our design will fallsonewhere between
the two. The Wndow class will provide a convenientinterface that supports the
nost popul ar wi ndowi ng features. BecauselLexi will deal with this class directly,
the Wndow cl ass nust al sosupport the things Lexi knows about, nanely, glyphs.
That meansW ndow s i nterface nmust incl ude a basi c set of graphi cs operati onsthat
| ets glyphs draw thenselves in the window Table 2.3 gives a sanpling of the

operations in the Wndow class interface.

wi ndow managenent virtual void Redraw()
rtual void Raise()
rtual void Lower()

Vv

Vv

virtual void Ilconify()

virtual void Deiconify()

graphi cs virtual void DrawLine(...)
rtual void DrawRect(...)

rtual void DrawPol ygon(...)

Vv

Vv

virtual void DrawText(...)

Table 2.3: Wndow class interface

W ndow i s an abstract class. Concrete subcl asses of W ndow support thedifferent
ki nds of wi ndows that users deal with. For exanple, application wi ndows, icons,
and war ni ng di al ogs are all wi ndows, butthey have somewhat different behaviors.
So we can define subcl assesli ke Applicati onW ndow, | conW ndow, and Di al ogW ndow

to capture thesedi fferences. The resulting class hierarchy gives applications

66



Design Patterns: Elenents of Reusable Object-Oriented Software

i keLexi a uniformand intuitive windowi ng abstracti on, one that doesn'tdepend

on any particular vendor's w ndow system

Glyph glyph Window

DraweWindow) Redrawy) O—q-----—-+ glyph—=Ciraw(this)
teonifyl)
Lower(}

Drrawlinef)

A
| |

ApplicationWindow lconWindow DialogWindow

OWINEr

lconify() Lower() §

owner—=Lower()

Now t hat we've defined a window interface for Lexi to work with, where does the
real platformspecific windowcome in? If we're notinpl enenting our own w ndow
system then at some point our wi ndowabstraction nmust be inplenented in terns

of what the target wi ndowsyst emprovi des. So where does that i npl ementationlive?

One approach is to inplenment multiple versions of the Wndow class andits
subcl asses, one versi onfor each wi ndowi ng pl atform We' d have t ochoose t he versi on
tousewhenwe buil dLexi for agivenplatform But i magi net he mai nt enance headaches
we' d have keepi ngtrack of nul ti pl e cl asses, all named "W ndow' but each i npl enent ed
on adi fferent window system Alternatively, we could

creat ei npl ement ati on-speci fi c subcl asses of each cl ass i nthe W ndowhi er ar chy—and
end up with anot her subcl ass expl osi on problemlike the onewe had trying to add
enbel | i shments. Both of these alternatives haveanot her drawback: Neither gives
us the flexibility to change thew ndow system we use after we've conpiled the

program So we'll haveto keep several different executables around as well.

Neither alternative is very appealing, but what else can we do? Thesane thing
we did for formatting and enbel |i shnment, nanely, encapsul ate the concept that
varies. What varies in this case is thew ndow systeminplenentation. If we

encapsul ate a wi ndow systen sfunctionality in an object, then we can inpl ement
our W ndow cl ass andsubcl asses in terns of that object's interface. Mreover,
if thatinterface can serve all the window systens we're interested in, thenwe
won't have to change W ndow or any of its subclasses to supportdifferent w ndow

systens. We can configure wi ndow objects to thew ndow systemwe want sinply by
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passing themthe ri ght wi ndowsyst em encapsul ati ng object. W can even configure

the wi ndow atrun-tine.

W ndow and W ndowl np

We' || define aseparate Wndow np cl ass hi erarchy i nwhi ch tohi de di fferent wi ndow
systemi npl enent ati ons. W ndow npi s an abstractcl ass for obj ects that encapsul ate
wi ndow system dependent code. To makelLexi work on a particul ar w ndow system

we configure each wi ndowobj ect with an i nstance of a W ndow np subcl ass for that

system Thefoll owi ng di agram shows the rel ati onship between the W ndow and

W ndowl nphi er ar chi es:

Window

Raise(l Glmp Windowlmp
JrawReet],.. ) !
OrawRectf...) DeviceRaise)

/k DeviceRecii...)

| ApplicationWindow | DialogWindow

fconWindow MacWindowlmp PMWindowimp KWindowlmp

DaviceHaise() DreviceRaise() DeviceHaise()
DeviceMact], ..} DeviceRact]{...) DeviceHact]..)

By hiding the inplenentations in Wndow np cl asses, we avoid pol | uti ngthe W ndow
cl asses with wi ndow syst em dependenci es, which keeps theW ndow cl ass hi erarchy
comparatively smal |l and stabl e. Meanwhi | e wecan easily extend the i npl enentati on

hi erarchy to support new wi ndowsyst ens.

W ndow np Subcl asses

Subcl asses of W ndowl np convert requests i nto wi ndow system specifi coperations.
Consi der the exanple we used in Section 2.2. W defined theRectangle::Draw in

terms of the DrawRect operation onthe W ndow instance:
voi d Rectangl e:: Draw (W ndow w) {

w>DrawRect (_x0, _y0, _x1, _y1);

The default inplenmentation of DrawRect uses the abstractoperation for draw ng

rectangl es decl ared by W ndow np:
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void W ndow: : DrawRect ( Coord x0O, Coord y0, Coord x1, Coord yl )
{ _i mp->Devi ceRect (x0, yO0, x1, yl); }

where _inp is a nenber variable of Wndow that stores theW ndow np with which
the Wndow i s configured. The w ndowi npl enentation is defined by the instance
of the Wndowl np subcl assthat _inmp points to. For an XW ndowl np (that is,

aW ndowl mp subcl ass for t he XW ndowSyst en), t heDevi ceRect' s inpl ement ati on m ght

| ook |ike

voi d XW ndow np: : Devi ceRect ( Coord x0, Coord yO, Coord x1, Coord yl )
{

int x = round(m n(x0, x1));
int y = round(mn(yO0, y1));
int w=round(abs(x0 - x1));
int h = round(abs(y0 - y1));

XDr awRect angl e(_dpy, _winid, _gc, x, y, w, h);

Devi ceRect i s definedlikethis becauseXDrawRect angl e (the Xinterface for draw ng
a rectangl e)defines arectangleinterns of its [ower |eft corner, its w dth, and
its height. DeviceRect nust conpute these valuesfromthose supplied. First it
ascertains thelower | eft corner(since (x0, y0) m ght be any oneof the rectangle's

four corners) and then cal cul ates the w dt h andhei ght.

PMW ndowl np (a subcl ass of Wndowl np for Presentati on Manager) woul d define
Devi ceRect differently:

voi d PMW ndow np: : Devi ceRect ( Coord x0, Coord y0, Coord x1, Coord yl )
{

Coord left = mn(x0, x1);

Coord right = nmax(x0, x1);

Coord bottom = min(y0, yl1);

Coord top = max(y0, y1);

PPO NTL point[4];

point[0].x = left; point[0]. top;

y
point[1].x = right;point[1].y top;
point[2].x = right;point[2].y = bottom
point[3].x = left; point[3].y = bottom

if ( (GpiBeginPath(_hps, 1L) == false) ||
(Gpi Set Current Posi tion(_hps, &oint[3]) == false) ||
(Gpi Pol yLi ne(_hps, 4L, point) == GPI_ERROR) ||
(Gpi EndPat h(_hps) == fal se) )

{
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/'l report error

} else {
Gpi StrokePat h(_hps, 1L, 0OL);
}
}
Wiy is this so different fromthe X version? Wl |, PMdoesn't have anoperation

for drawing rectangles explicitly as X does. |Instead, PM has anore general
interface for specifying vertices of nultisegnment shapes(called a path) and for

outlining or filling the area theyencl ose.

PM s i npl enent ati on of Devi ceRect i s obviously quitedifferent fromX s, but that
doesn't matter. W ndow np hi desvariations in wi ndow systeminterfaces behind a
potentially large butstable interface. That | ets Wndow subclass witers focus
on the wi ndowabstracti on and not on wi ndow systemdetails. It also lets us

addsupport for new wi ndow systems without disturbing the Wndow cl asses.

Configuri ng Wndows wi th W ndow nps

A key issue we haven't addressed is how a wi ndow gets configured w t ht he proper
W ndowl np subclass in the first place. Stated another way,when does _inp get

initialized, and who knows what wi ndowsystem (and consequently which W ndow np
subcl ass) is in use? Thewi ndow will need some kind of Wndow np before it can

do anyt hi ngi nteresting.

There are several possibilities, but we'll focus on one that uses theAbstract
Factory (99) pattern. We can defi nean abstract factory cl ass W ndowSyst enfact ory
that provides aninterface for creating different kinds of w ndow

syst em dependenti npl enent ati on obj ects:

cl ass W ndowSyst enfactory {

public:

virtual Wndow np* CreateW ndowl np() = O;

virtual Colorlnmp* CreateColorlnp() = 0;

virtual Fontlnmp* CreateFontlnp() = O;

/]l a "Create..." operation for all w ndow system resources
h

Now we can define a concrete factory for each w ndow system

cl ass PMW ndowSyst enfFactory : public WndowSystenfactory {
virtual Wndow np* CreateW ndow np()
{ return new PMAN ndow np; }
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/11
b

cl ass XW ndowSyst enfFactory : public WndowSystenfactory {
virtual Wndow np* CreateW ndow np()
{ return new XW ndow np; }
11

The W ndow base cl ass constructor can use theW ndowSystenfactory interface to

initialize the_inp member with the Wndowl np that's right for the wi ndowsystem

W ndow. : W ndow () {
_inp = wi ndowSyst enfact ory- >Cr eat eW ndowl np() ;

The wi ndowSyst enfactory vari abl eis awell-knowninstance of a WndowSyst enfact ory
subcl ass, akin to the well-knowngui Factory vari abl e defining the | ook and feel.

Thew ndowSyst enfFactory variable can be initialized in the sameway.

Bri dge Pattern

The W ndowl nmp cl ass defines an interface to cormon wi ndow systenfacilities, but
itsdesignisdrivenbydifferent constraintsthanWndow sinterface. Application
programrers won't deal withWndowl np's interface directly; they only deal with
W ndow obj ects. So Wndowl np's interface needn't match the application
progranmmer' svi ewof the worl d, as was our concerninthe desi gn of the Wndowl ass
hi erarchy andi nterface. Wndowl np' sinterface cannore cl osel yrefl ect what wi ndow
systens actually provide, warts and all. It can bebiased toward either an
intersection or a union of functionalityapproach, whichever suits the target

wi ndow systens best.

Theinportant thingtorealizeisthat Wndow sinterfacecaterstotheapplications
progranmer, while Wndow np caters to wi ndow systens. Separati ng wi ndow ng
functionality into Wndow and W ndow nphi erarchies | ets us inplenent and
speci alize these interfacesi ndependently. Objects fromthese hierarchies

cooperate to letLexi work w thout nodification on multiple wi ndow systens.

The rel ati onshi p between W ndow and W ndowl np i s an exanpl e of the Bridge (171)
pattern. The intent behind Bridge is to all owseparate class hierarchies to work
toget her even as they evol vei ndependently. Qur design criteria led us to create
two separate cl asshierarchies, one that supports the | ogical notion of w ndows,

andanot her for capturing different inplenmentations of wi ndows. The Bri dgepattern
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| ets us mai ntai n and enhance our | ogi cal wi ndowi ngabstractions wi thout touching

wi ndow syst em dependent code, and viceversa.

YUser Qperations

Sone of Lexi's functionality is available through the docunment' sWSI WG
representation. You enter and delete text, nove the insertionpoint, and sel ect
ranges of text by pointing, clicking, and typingdirectly in the docunent. O her
functionality is accessed indirectlythrough user operations in Lexi's pull-down
menus, buttons, andkeyboard accel erators. The functionality includes operations
for

creating a new docunent,

openi ng, saving, and printing an existing docunent,

cutting selected text out of the document and pasting it back in,
changing the font and style of selected text,

changing the formatting of text, such as its alignment andjustification,
quitting the application,

and on and on.

Lexi provides different user interfaces for these operations.But we don't want
to associate a particul ar user operationwi th aparticul ar user i nterface, because
we may want multiple userinterfaces to the sane operation (you can turn t he page
using either apage button or a nenu operation, for exanple). We may al so want
tochange the interface in the future.

Furthernore, these operations are inplenmented in nmany differentcl asses. W as
i mpl enentors want to access their functionalityw thout creating a | ot of

dependenci es between i npl enentati on and userinterface classes. Ot herw se we'll
end up with atightly coupl edi npl emrentation, which will be harder to understand,

ext end, andnmai nt ai n.

To further conplicate matters, we want Lexi to support undo andredo®of nost but
not all its functionality. Specifically, we want to beable to undo

document - nodi fyi ng operations |ike delete, with which auser can destroy | ots of
datainadvertently. But we shouldn't try toundo an operationlike saving a draw ng
or quitting the application. These operations should have no effect on the undo
process. W alsodon't want an arbitrary limt on the nunmber of |evels of undo

andr edo.
It's clear that support for user operations perneates the application.The

challenge is to cone up with a si npl e and ext ensi bl e nechani snt hat satisfies all

of these needs.
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Encapsul ati ng a Request

Fromour perspective as designers, a pull-down nmenu is just anotherkind of glyph
that contains other gl yphs. What di stingui shespul | -down nmenus fromother glyphs
that have children is that nostglyphs in nmenus do some work in response to an

up-click.

Let's assune that these work-perform ng gl yphs are instances of aGd yph subcl ass
called Menultem and that they do their work inresponse to a request froma
client.%Carrying out therequest m ght i nvol ve an operation on one object, or many

operati onson nany objects, or sonething in between.

W coul d defi ne a subcl ass of Menultemfor every user operation andt hen hard-code
each subclass to carry out the request. But that's notreally right; we don't need
a subcl ass of Menultemfor each requestany nore than we need a subcl ass for each
text string in a pull-downnmenu. Mreover, this approach couples the request to
a particularuser interface, making it hard to fulfill the request through

adi fferent user interface.

To illustrate, suppose you could advance to the |ast page in thedocunent both
through a Menultemin a pull-down nenu and bypressing a page i con at the bottom
of Lexi's interface (which mi ghtbe nore conveni ent for short docunments). If we
associ ate the requestwith a Menultem through inheritance, then we nust do the
sane for thepage i con and any ot her ki nd of wi dget that m ght i ssue such arequest.
That can give rise to a nunmber of classes approaching theproduct of the nunber

of widget types and the nunber of requests.

What's missing is a mechanismthat | ets us paraneteri ze nenu itens byt he request
they should fulfill. That way we avoid a proliferation ofsubclasses and all ow
for greater flexibility at run-time. W coul dparaneteri ze Menultemw thafunction

to call, but that's not a conpletesolution for at |east three reasons:

It doesn't address the undo/redo problem
2. It's hard to associate state with a function. For exanple, afunction that
changes the font needs to know which font.

3. Functions are hard to extend, and it's hard to reuse parts of them

These reasons suggest that we should paraneterize Menultens with anobject, not
a function. Then we can use inheritance to extendand reuse the request's

i mpl enent ati on. W al so have a place to storestate and i npl enent undo/redo
functionality. Here we have anot herexanpl e of encapsul ating the concept that

varies, inthis case arequest. W'l | encapsul at e each request i n a commandobj ect .

73



Design Patterns: Elenents of Reusable Object-Oriented Software

Conmmand Cl ass and Subcl asses

First we define a Conmand abstract class toprovide an interface for issuing a
request. The basic interfaceconsists of a single abstract operation called

"

"Execute." Subcl assesof Conmand i npl ement Execute in different ways to fulfill
di fferentrequests. Some subcl asses nay del egate part or all of the work toother
objects. O her subclasses may be in a position to fulfillthe request entirely
on their own (see Figure 2.11).To the requester, however, a Conmand object is

a Conmand obj ect—t heyare treated unifornly.

Command

Execute(}

_____ A

PasteCommand FontCommand SaveCommand save QuitCommand
Execute() Q Execute() @ Execute() 7 Execulel) ¢

1 1 1 1
buffer i newFont i : :

T T

! ! pop up a uual-::-g\t‘* if (document Is modified) { =Y

L — box that lets the save-=Exacute])

aste bufier | clocted user name the j
pasie Duker make selecte document, and quit the application
intg documeant text appear in then save the
newront document under
fhat name

Figure 2.11: Partial Command cl ass hierarchy

Now Menul t emcan st ore a Conmand obj ect that encapsul at es arequest (Figure 2.12).
We gi ve each nenu it emobj ectan i nstance of the Command subcl ass that's suitable
for that nenuitem just as we specify the text to appear in the menuitem Wena
user chooses a particular nenu item the Menultem sinply call sExecute on its

Conmmand obj ect to carry out the request. Note thatbuttons and ot her wi dgets can

use conmands in the same way nmenuitens do.
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Giyph
Menultem .;:_.m}mmand w Command

Clicked(} o Execute])
1
1
1

command-=Exec utei}-:h \

Figure 2.12: Menultem Conmand rel ationship

Undoabi lity

Undo/redo is aninportant capability ininteractive applications. Toundo and redo
comrands, we add an Unexecut e operationto Command' sinterface. Unexecute reverses
the effects of a precedi ng Executeoperation using whatever undo information
Execute stored. I n the caseof a Font Cormand, for exanple, the Execute operation
woul d store therange of text affected by the font change along with the
original font(s). Font Command' s Unexecut e oper ati onwoul d restore t he range of t ext

toits original font(s).

Soneti mes undoabi | ity nust be determined at run-time. Arequest tochange the font
of a selection does nothing if the text al readyappears in that font. Suppose the
user selects some text and thenrequests a spurious font change. Wat should be
the result of asubsequent undo request? Shoul d a neani ngl ess change cause the
undor equest to do sonet hi ng equal | y neani ngl ess? Probably not. If theuser repeats
the spurious font change several tines, he shouldn't haveto performexactly the
same nunmber of undo operations to get back tothe | ast neani ngful operation. I|f
the net effect of executing acomand was nothing, then there's no need for a

correspondi ng undor equest .

So to determne if a conmand i s undoabl e, we add an abstract Reversi bl e operati on
to the Command interface. Reversible returns aBool ean val ue. Subcl asses can

redefine this operation to return trueor false based on run-tine criteria.

Command Hi story

The final step in supporting arbitrary-1evel undo and redo i s todefine a command
history, or list of commands that havebeen executed (or unexecuted, if sone

comrands have been undone). Conceptual ly, the comand history | ooks like this:
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O-OO0

- past commands

present

Each circle represents a Command object. In this case the user hasissued four
comrands. The | ef t nrost comand was i ssued first, foll owedby t he second-1 ef t npst,
and so on until the nost recently issuedconmand, which is rightnost. The line
marked "present" keeps trackof the npst recently executed (and unexecuted)
command.

To undo the last command, we sinply call Unexecute on the nost recentconmand:

b
S
S

Unexecutel)

present

After unexecuting the command, we nove the "present” |ine onecommand to the | eft.
I f the user chooses undo agai n, t he next-nostrecentlyissued conmand wi || be undone

in the same way, and we're leftin the state depicted here:

= past | future =

present

You can see that by sinply repeatingthis procedure we get nultiplel evel s of undo.

The nunber of levels is limted only by the I ength ofthe conmand history.

To redo a conmand that' s j ust been undone, we do the sane t hi ng i nreverse. Conmands
to the right of the present |ine are commands thatnmay be redone in the future.
To redo the | ast undone conmand, we cal | Execute on the command to the right of
the present I|ine:
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'b\
~,
sExecube ()

present

Then we advance the present |ine so that a subsequent redo will callredo on the

following conmand in the future.

00,00

= past | future -

present

O course, if the subsequent operation is not another redo but an undo,then the
commandtotheleft of thepresent linew || beundone. Thusthe user caneffectively

go back and forth in tinme as needed torecover fromerrors.

Command Pattern

Lexi's commands are an application of the Command (263) pattern, which describes
how t oencapsul ate a request. The Command pattern prescribes a uniform nterface
for i ssuingrequests that | ets you configure clients tohandl e di fferent requests.
The interface shields clients fromtherequest's inplenentation. A conmand may
del egate all, part, or noneof the request's i nplementati onto other objects. This
is perfect forapplications |like Lexi that must provide centralized access

tofunctionality scattered t hroughout the application. The pattern al sodi scusses

undo and redo nechanisns built on the basi c Conmandi nterface.

¥Spel li ng Checki ng and Hyphenati on

The | ast design probleminvol ves textual analysis, specifically checkingfor

m sspel | i ngs and i ntroduci ng hyphenati on poi nts where needed f orgood fornmatti ng.

The constraints here are simlar tothose we had for the formatti ngdesi gn probl em
in Section 2.3.As was the case for |inebreaking strategies, there's nore than
oneway to check spelling and comput e hyphenati on points. So here toowe want to
support multiple algorithns. A diverse set of algorithnscan provi de a choice of
space/time/quality trade-offs. W shoul dmake it easy to add new al gorithms as

wel | .
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We al so want to avoidwiring this functionality into the documentstructure. This
goal isevennoreinportant herethanit wasintheformattingcase, because spelling
checki ng and hyphenation are justtwo of potentially many kinds of anal yses we
may want Lexi tosupport. Inevitably we'll want to expand Lexi's

anal yticalabilitiesover tine. W ni ght add searchi ng, word counti ng, acal cul ati on
facility for addi ng up tabul ar val ues, grammar checki ng, and so forth. But we don't
want to change the G yph class and all itssubcl asses every tine we introduce new

functionality of this sort.

There are actually two pieces to this puzzle: (1) accessing theinformation to
be anal yzed, which we have scattered over the glyphsin the docunment structure,

and (2) doing the analysis. W'll |ook atthese two pieces separately.

Accessing Scattered Information

Many ki nds of anal ysi s require exani ningthe text character bycharacter. The text
we needtoanal yzei s scatteredthroughout ahi erarchical structure of gl yph objects.
To exami ne text i nsuch astructure, we need an access nechani smt hat has know edge
about thedata structures inwhichobjects are stored. Sone gl yphs m ght storetheir
childreninlinkedlists, others m ght use arrays, and stillothers m ght use nore
esoteric data structures. Qur access mechani stTmust be abl e to handl e al | of these

possibilities.

An added conplicationis that different anal yses access i nformati on indifferent
ways. Most anal yses will traverse the text frombeginning to end. But sonme do the
opposi te—areverse search, forexanpl e, needs to progress throughthetext backward
rather thanforward. Evaluating al gebraic expressions could require an

i nordertraversal .

So our access nechani smnust acconmodate differing data structures, andwe nust

support di fferent kinds of traversals, such as preorder, postorder, and i norder.

Encapsul ati ng Access and Traversa

Ri ght nowour glyphinterfaceusesaninteger indextolet clientsrefertochildren.
Al 't hough that m ght be reasonabl e for glyph classesthat store their children in
an array, it may be inefficient forglyphs that use a linked list. An inportant
role of the glyphabstraction is to hide the data structure in which children
arestored. That way we can change the data structure a glyph cl ass usesw t hout

af fecting other classes.

Therefore only the gl yph can knowthe data structure it uses. Acorollary is that

the gl yph interface shouldn't be biased toward onedata structure or another. It
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shoul dn't be better suited to arraysthan to linked lists, for exanple, as it is

now.

We can solve this problem and support several different kinds oftraversals at
the sane time. W can put nultiple access and traversal capabilities directly in
the gl yph cl asses and provide a way to chooseanong them perhaps by supplying
an enuner at ed const ant as aparaneter. The cl asses pass t hi s paranet er ar ound duri ng
atraversaltoensurethey're all doingthe same kind of traversal. They have t opass

around any i nformation they've accumul ated during traversal.

We m ght add the follow ng abstract operations to dyph's interface tosupport

thi s approach:

void First(Traversal Kkind)
voi d Next ()

bool 1sDone()

G yph* GetCurrent()

void I nsert(d yph*)

Operations First, Next, and |IsDonecontrol the traversal. First initializes the
traversal. Ittakes the kind of traversal as a paraneter of typeTraversal, an

enuner at ed constant with val uessuch as CHI LDREN(to traversethe gl yph' s i mmediate
childrenonly), PRECRDER(totraversetheentire structureinpreorder), POSTORDER,
and | NORDER. Next advances to the next glyph in the traversal, andl sDone reports
whet her the traversal is over or not.GetCurrent replaces theChild operation; it
accesses the current glyph in thetraversal. Insert replaces the old operation;
it insertsthe given glyph at the current position.An analysis would use the

followi ng C++ code to do a preordertraversal of a glyph structure rooted at g:

G yph* g;

for (g->First(PREORDER); !g->IsDone(); g->Next()) {
A yph* current = g->CGetCurrent();

/1 do sone anal ysis

Notice that we've bani shed the integer index fromthe glyph interface. There's
no | onger anything that biases the interface toward one kindof collection or
anot her. W've also saved clients from having toi npl enent common ki nds of

traversal s thensel ves.

But t hi s approach still has probl ens. For onething, it can't supportnewtraversals
wi t hout either extending the set of enumerated val uesor addi ng new operations.

Say we wanted to have a variation on preordertraversal that automatically skips
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non-textual glyphs. W'd have tochange the Traversal enuneration to include
sonet hi ng | i keTEXTUAL_PREORDER.

We'd li keto avoi d changi ng exi stingdeclarations.Puttingthetraversal mechani sm
entirely in the @ yph class hierarchymakes it hard to nmodify or extend without
changing lots of classes.It's also difficult to reuse the mechanismto traverse
ot her kinds ofobject structures. And we can't have nore than one traversal

i nprogress on a structure.

Once again, a better solutionis to encapsul ate the concept thatvaries, inthis
casethe access and traversal nechani snms. W cani ntroduce a cl ass of obj ects cal |l ed
iterators whose sol epurpose is to define different sets of these mechani sns. W
can usei nheritancetol et us access different data structures uniformy andsupport
new ki nds of traversals as well. And we won't have to changegl yph i nterfaces or

di sturb existing glyph inplenentations to do it.

Iterator C ass and Subcl asses

We' || use an abstract classcalledIterator todefineageneral interfacefor access
and traversal. Concretesubcl asses |ike Arraylterator andLi stlterator inplenent
the interface to provi deaccess to arrays and lists, while

Preorderlterator, Postorderliterator, and the like inplenent differenttraversals
on specific structures. Each Iterator subclass has areference to the structure
it traverses. Subclass instances areinitialized with this reference when they
are created. Figure 2.13 illustrates thelterator class along with several
subcl asses. Notice that we'veadded a Createlterator abstract operation to the

A yph classinterface to support iterators.
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Figure 2.13:

representation:

d yph* child =

1'i->l sDone();

= g->Createlterator();

i->Next()) {

i->Currentlten();

/1 do something with current child

and Next advances the iteratorto the next

retum new Nulifterator

@

Iterator class and subcl asses

itemin the list.

The lterator i nterface provi des operations First, Next, and | sDone forcontrolling

thetraversal. ThelListlterator classinplenments First topoint tothefirst el enent

| sDone

returns whet her or not the |listpointer points beyondthelast element inthelist.
Currentltendereferences the iterator to return the glyph it points to.

AnArraylterator class would do similar things but on anarray of glyphs.

Now we can access the children of a glyph structure w thout knowi ngits
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Createlterator returns a Nulllterator instance by default. ANulllterator is a
degenerate iterator for glyphs that have nochildren, that is, |eaf glyphs.

Nulll'terator's |sDone operational ways returns true.

A gl yph subclass that has children will override Createlterator toreturn an
instance of adifferent Iterator subclass. Wi chsubcl ass depends on t he structure
that stores the children. If theRow subcl ass of G yph stores its children in a

list_children, then its Createlterator operation would | ooklike this:

Iterator<@ yph*>* Row :Createlterator () {

return new Listlterator<@ yph*>(_children);

Iterators for preorder and i norder traversals inplenment theirtraversalsinterns
of glyph-specific iterators. The iterators forthese traversals are supplied the
root glyphinthe structure theytraverse. They call Createlterator on the glyphs

in the structure anduse a stack to keep track of the resulting iterators.

For exanple, class Preorderlterator gets the iterator fronthe root glyph,

initializes it to point toits first elenent, and thenpushes it onto the stack:

void Preorderlterator::First () {
Iterator<d yph*>* i = _root->Createlterator();
if (i) {
i->First();
_iterators. RenoveAl | ();

_iterators. Push(i);

Currentltemwoul d sinmply call Currentltemon theiterator at the top of the stack:

G yph* Preorderlterator::Currentltem () const {

Return _iterators.Size() > 0 ? _iterators.Top()->Currentlten() : O;

The Next operation gets the top iterator on the stack andasks its current item
tocreateaniterator, inaneffort todescendthe gl yph structure as far as possibl e
(thisis apreordertraversal, after all). Next sets the newiterator to thefirst
iteminthetraversal and pushesit onthestack. ThenNext teststhelatest iterator;
if its |IsDoneoperation returns true, then we've finished traversing the

currentsubtree (or leaf) inthetraversal. Inthat case, Next popsthetopiterator
of f the stack and repeats this processuntil it findsthe next i nconpletetraversal,

if there is one; if not, then we havefinished traversing the structure.
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void Preorderlterator::Next () {

Iterator<@yph*>* i = _iterators.Top()->Currentlten()->Createlterator();

i->First();

_iterators. Push(i);

while ( _iterators.Size() > 0 & _iterators. Top()->IsDone() ) {
delete _iterators. Pop();

_iterators. Top()->Next();

Notice howthe Iterator class hierarchy | ets us add newki nds oftraversal s wi t hout
nodi fyi ng gl yph cl asses—we sinply subcl asslterator and add a new traversal as
we have withPreorderlterator. d yph subcl asses use the saneinterface to give
clients access to their children wi thout revealingthe underlying data structure
they use to store them Becauseiterators store their own copy of the state of
a traversal, we cancarry on nultiple traversals sinultaneously, even on the

samestructure. And though our traversals have been over glyph structuresin this
exanple, there's no reason we can't paraneterize a class |ikePreorderlterator
by the type of object inthe structure. W' d use tenplates to do that in C++. Then

we can reuse the nmachineryin Preorderlterator to traverse other structures.

Iterator Pattern

The lterator (289) pattern captures these techni quesfor supporting access and
traversal over object structures. It'sapplicablenot onlytoconposite structures
but tocollectionsaswell. It abstractsthetraversal al gorithmandshieldsclients
fronthe internal structure of the objects they traverse. The Iteratorpattern
illustrates once nore how encapsul ating the concept thatvaries hel ps us gain
flexibility andreusability. Even so, t heprobl emof iteration has surprisingdepth,
and the Iterator patterncovers many nore nuances and trade-offs than we've

consi dered here.

Traversal versus Traversal Actions

Now t hat we have a way of traversing the glyph structure, we need tocheck the
spelling and do the hyphenation. Both anal yses invol veaccunul ati ng i nfornmation

during the traversal.

First we have to decide where to put the responsibility for analysis. W could
put it in the Iterator classes, thereby naking analysis anintegral part of
traversal. But we get nore flexibility and potential for reuse i f we distinguish

bet ween the traversal and the acti onsperformed during traversal. That's because
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di fferent anal yses oftenrequire the sane kind of traversal. Hence we can reuse
the sanme setof iterators for different anal yses. For exanpl e, preorder traversalis
common t o many anal yses, i ncl udi ng spel | i ng checki ng, hyphenati on, f orward search,

and word count.

So anal ysis and traversal should be separate. Were el se can we putthe
responsibility for analysis? W know there are many ki nds of anal yses we ni ght
want to do. Each analysis will do different thingsat different points in the
traversal . Sone gl yphs are noresignificant than others dependi ng on the kind of
anal ysis. If we' rechecki ng spel l'i ng or hyphenati ng, we want to consi der character
gl yphsand not graphi cal ones likelines and bitmapped i mages. | f we' remaki ng col or
separations, we'd want to consider visible glyphs and notinvisible ones.

Inevitably, different analyses will analyze differentglyphs.

Therefore a gi ven anal ysis must be abl e to distinguish different kinds of gl yphs.
An obvi ous approach is to put the analytical capability into theglyph classes
thenmsel ves. For each anal ysis we can add one or nobreabstract operations to the
d yph cl ass and have subcl asses i npl ementthemin accordance with the role they

play in the analysis.

But the trouble with that approach is that we'll have to change everygl yph cl ass
whenever we add a new ki nd of anal ysis. W can ease thisproblemin sone cases:
If onlyafewcl asses participateintheanalysis, or if nost cl asses dot he anal ysis
t he same way, t hen we can suppl yadefault i npl ementationfor the abstract operation
in the dyphclass. The default operation would cover the commopn case. Thus

we'dlimt changes to just the G yph class and those subcl asses that devi atefrom

the norm

Yet even if a default inplenentation reduces the nunber of changes, aninsidious
probl emrenains: Ayph's interface expands with every newanal ytical capability.
Over timethe anal ytical operationswi || starttoobscurethebasicdyphinterface.
I't becones hardto seethat agl yph's mai n purposeistodefineandstructureobjects

t hat haveappearance and shape—that interface gets lost in the noise.

Encapsul ati ng the Anal ysis

Fromal |l indications, we need to encapsul ate the analysis in aseparate object,
much |i ke we've done many tines before. We could putthe machinery for a given
analysisintoits own class. W coul d usean i nstance of this class in conjunction
withan appropriateiterator. Theiterator would"carry" theinstanceto each glyph
in thestructure. The analysis object could then performa piece of theanalysis
at each point in the traversal. The anal yzer accunul at esi nformati on of interest

(characters in this case) as the traversal proceeds:
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lierator

o

The fundanental question with this approach is how the anal ysis
obj ect di stingui shes di fferent kinds of gl yphs without resorting to typetests or

downcasts. We don't want a SpellingChecker classto include (pseudo)code |ike

voi d Spel lingChecker:: Check (d yph* glyph) {
Char acter* c;
Row* r;

| mage* i;

if (c = dynanic_cast<Character*>(glyph)) {
/'l anal yze the character

} else if (r = dynam c_cast <Row*>(glyph)) {
/] prepare to analyze r's children

} else if (i = dynam c_cast<lmage*>(glyph)) {
/1 do nothing

This codeis prettyugly. It reliesonfairly esoteric capabilitiesliketype-safe
casts. It's hard to extend as well. W' Il have torenenber to change t he body of
this functi on whenever we change t hed yph class hierarchy. In fact, this is the

ki nd of code thatobject-oriented | anguages were intended to elimnate.

We want to avoi d such a brute-force approach, but how? Let's consi derwhat happens

when we add the followi ng abstract operation to the d yphcl ass:
voi d CheckMe( Spel | i ngChecker &)

We define CheckMe in every dyph subclass as follows:
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voi d d yphSubcl ass:: CheckMe (Spel | i ngChecker & checker)
{ checker. Checkd yphSubcl ass(this); }

wher e d yphSubcl ass woul d be repl aced by t he name of t hegl yph subcl ass. Note that
when CheckMe is call ed, thespecific Gyph subclass is known—after all, we're in
one of itsoperations. In turn, theSpellingChecker class interface includes an

operation |ikeCheck@ yphSubcl ass for every 4 yphsubcl ass®

cl ass Spel | i ngChecker {

public:

Spel | i ngChecker () ;

virtual void CheckCharacter(Character*);
virtual void CheckRow( Row);

virtual void Checkl nage(l nmage*);

/1 ... and so forth

Li st <char*>& Get M sspel l'i ngs();

pr ot ect ed:

virtual bool |sM sspelled(const char*);

private:
char _current Wr d[ MAX_WORD_SI ZE] ;
Li st <char*> _mi sspel | ings;

}s

Spel | i ngChecker's checki ng operation forCharacter glyphs mght | ook sonething
l'ike this:

voi d Spel I'i ngChecker:: CheckCharacter (Character* c) {
const char ch = c->Get Char Code();
if (isalpha(ch)) {

/1 append al phabetic character to _currentWrd

} else {

/1 we hit a nonal phabetic character

if (1sMsspelled(_currentWord)) {

/1 add _currentWord to _mi sspellings

_mi sspel l'i ngs. Append(strdup(_currentWrd));
}

_currentWrd[0] = "\0";

/1 reset _currentWord to check next word
}

}
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Noti ce we' ve defined a speci al Get Char Code operation onjust the Character class.
The spel I'i ng checker can deal withsubcl ass-specific operations wi thout resorting

to type tests orcasts—it lets us treat objects specially.

CheckChar act er accunul ates al phabetic charactersinto the _currentWrd buffer.
When it encounters anonal phabetic character, such as an underscore, it uses

thel sM sspel | ed operation to check the spelling of theword in _currentWrd. | f
the word i sm sspel | ed, then CheckCharacter adds the word to thelist of m sspelled
words. Then it nust clear out the _currentWord buffer to ready it for the next
word. When the traversal is over, you can retrieve the list of m sspelledwords

with the Get M sspel lings operation.

Now we can traverse the glyph structure, callingCheckMe on each glyph with the
spel |l ing checker as an argunent.This effectively identifies each glyph to the
Spel | i ngChecker andpronpts the checker to do the next increment in the spelling

check.

Spel I'i ngChecker spel |li ngChecker;

Conposi ti on* c;

11

G yph* g;

Preorderlterator i(c);

for (i.First(); !'i.lsDone(); i.Next()) {
g=1i.Currentlten();
g- >CheckMe(spel I i ngChecker) ;

The followi ng interaction diagramillustrates howCharacter glyphs and the

Spel I i ngChecker obj ectwork together:
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aCharacter ("a") anotherCharacter ("_") aSpellingChecker

CheckMe(aSpellingChecker)

CheckCharacter(this)

GetCharacter()

ChackMe{aSpellingChacker) L I
CheckCharacter(this)

GetCharacter])

Thi s approach works for finding spelling errors, but how does it hel pus support
mul tiple kinds of analysis? It |ooks |ike we have to addan operation |ike
CheckMe( Spel | i ngChecker & to Q@ yph andits subcl asses whenever we add a new ki nd
of analysis. That's true ifwe insist on an i ndependent cl ass for every anal ysi s.
Butthere's no reason why we can't give all analysis classes thesane interface.
Doing so lets us use them pol ynorphically. Thatneans we can repl ace

anal ysi s-specific operations |ikeCheckMe(SpellingChecker& with an

anal ysi s-i ndependent operation that takes a nore general paraneter.

Visitor Cl ass and Subcl asses

We'll use the termvisitor torefer generally to cl assesof objects that "visit"
other objects during a traversal and dosonething appropriate.In this case we
can define aVisitor class that defines an abstract interface forvisiting glyphs

in a structure.

class Visitor {

public:

virtual void VisitCharacter(Character*) { }
virtual void VisitRow(Row) { }

virtual void Visitlnage(lnage*) { }

/1 ... and so forth
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Concr et e subcl asses of Visitor performdifferent anal yses. For exanpl e, we coul d
have a Spel | i ngChecki ngVi sitorsubcl ass for checking spelling, and a

Hyphenati onVi si t orsubcl ass for hyphenation. SpellingCheckingVisitor woul dbe

i mpl enent ed exactly as we i npl ement ed Spel | i ngChecker above, except the operation
nanmes woul d ref | ect t he nore general Visitor i nterface. For exanpl e, CheckChar act er

woul d be called VisitCharacter.

Si nce CheckMe i sn't appropriate for visitors that don'tcheck anything, we'll give

it a nore general nane:

Accept. Its argunent nmust al so change to take aVisitor&, reflecting the fact
that it can accept any visitor. Now addi ng a new anal ysi s requires just defining
a newsubcl ass of Vi si tor—we don't have totouch any of the gl yph cl asses. W support

all future analyses by adding this one operationto G yph and its subcl asses.

W' ve already seen how spel ling checking works. We use a sinilarapproach in
HyphenationVisitor to accunul ate text. Butonce HyphenationVisitor's

Vi si t Character operati onhas assenbled an entire word, it works a little
differently. Insteadof checking the word for misspelling, it applies a
hyphenat i onal gorithmto determ nethe potential hyphenationpointsintheword,if
any. Then at each hyphenation point, it inserts a discretionary glyph into the
composition. Discretionaryglyphs are instances of Discretionary, a subclass
of A yph.

A discretionary glyph has one of two possible appearances dependi ng onwhet her
or not it is the last character on a line. If it's the lastcharacter, then the
di scretionary | ooks like a hyphen; if it's not atthe end of a line, then the
di scretionary has no appearancewhat soever. The di scretionary checks its parent
(a Rowobject) to seeif it is thelast child. The discretionary nakes this check
wheneverit's called ontodrawitself or calculate its boundaries. Theformatting
strategy treats discretionaries the same as whitespace, maki ng them candi dat es
for ending a line. The foll owi ng di agram shows howan enbedded di screti onary can

appear .

89



Design Patterns: Elenents of Reusable Object-Oriented Software

a" "I" ( discretionary

T 7 R
laluminum alloy;  °"  liajyminum al-1|
_____________ 1 |

Visitor Pattern

What we' ve described here is an application of the Visitor (366) pattern. The
Visitor class and itssubcl asses described earlier are the key participants in
the pattern. The Visitor pattern captures the technique we've used to all ow

anopen- ended nunber of anal yses of gl yph structures wi thout havi ng tochange the
gl yph cl asses thensel ves. Another nice feature of visitorsis that they can be
appliednot just toconposites|ikeour glyphstructures but toany object structure.
That includes sets,lists, evendirected-acyclic graphs. Furthernore, the cl asses
that avisitor can visit needn't be related to each other through a conmonparent

class. That neans visitors can work across cl ass hierarchies.

An i nmportant questionto ask yourself before applyingthe Visitorpatternis, Wich
cl ass hierarchi es change nost often? The pattern isnbst suitable when you want
to be able to do a variety of differentthings to objects that have a stabl e class
structure. Addi ng a newki nd of visitor requires nochangetothat class structure,
whi chi sespeciallyinportant whenthecl ass structureis|arge. But whenever youadd
a subclasstothe structure, you'll al so have to update all yourvisitor i nterfaces
toincludeaVisit... operationfor thatsubclass. | nour exanpl e that means addi ng
a newd yph subcl ass cal | ed Foowi | | require changingVisitor andall its subcl asses
to include aVisitFoo operation. But gi ven our design constraints, we'renmuch nore
i kely toadd a newki nd of anal ysis to Lexi than a newki nd of @ yph. So the Visitor

pattern is well-suited to our needs.

¥ Sunmary

We've applied eight different patterns to Lexi's design:

Conposite (183)to represent the document's physical structure,
Strategy (349) to allow differentformatting al gorithns,

Decorator (196) for enbellishingthe user interface,

PN PR

Abstract Factory (99) forsupporting multiple |Iook-and-feel standards,
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Bridge (171) to allow multipl ew ndowi ng pl atforns,
Command (263) for undoabl e useroperations,

Iterator (289) for accessing andtraversing object structures, and

© N o o

Visitor (366) for all owi ng anopen-ended nunmber of anal ytical capabilities

wi t hout conplicatingthe docunent structure's inplenentation.

None of these designissuesislimtedto docunment editingapplications|like Lexi.
I ndeed, nmost nontrivial applications wllhave occasion to use many of these

patterns, though perhaps to dodifferent things. Afinancial anal ysis application
m ght useConposite to define investnent portfolios made up of subportfolios

andaccounts of different sorts. Aconpiler mght usethe Strategypatternto all ow
di fferent register allocationschenes for differenttarget machines. Applications
with a graphical user interface wi || probably apply at | east Decorator and Conmand

just as we have here.

Wil e we' ve covered several nmjor problens in Lexi's design, thereare |ots of
ot hers we haven't discussed. Then again, this bookdescribes nore than just the
ei ght patterns we' ve used here. So asyou study t he renmai ni ng patterns, think about
how you m ght use eachone in Lexi. O better yet, think about using themin your

owndesi gns!

lLexi's design is based on Doc, a text editingapplication devel oped byCal der
[CL92].

2Aut hors often view the document in ternms of itslogical structure as well, that
is, interms of sentences, paragraphs, sections, subsections, and chapters. To
keep t hi sexanpl e si npl e, our i nternal representationwon't storeinfornmationabout
the |l ogical structureexplicitly. But the design solutionwedescribe works equally

wel | for representing such infornation.

3Cal der was the first to use the term"glyph" in thiscontext [CL90].Mst

cont enporary docurment editors don't use an obj ect for everycharacter, presunably
for efficiency reasons. Cal der denonstratedthat this approachis feasibleinhis
thesis [Cal 93]. Qur glyphs are | esssophisticated than his in that we have
restrictedourstostricthierarchiesfor sinplicity. Calder's gl yphs can be shared
to reducestorage costs, thereby form ng directed-acyclic graph structures. W can
apply the Flyweight (218)pattern to get the same effect, but we'll |eave that

as an exerci sefor the reader.

“The i nterface we descri behere i s purposely ninimal to keep t he di scussi on si npl e.

A conpl eteinterface would include operations for nmanagi ng graphical
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attributessuchas col or, font, and coordi nate transformati ons, pl us operationsfor

nore sophisticated child nanagenent.

®An integer index is probably not the best way to specifya glyph's children,

dependi ng on the data structure the glyph uses.If it stores its children in a
linked list, then a pointer into thelist would be nore efficient. W'll see a
better solution to theindexing problemin Section 2.8, when we di scuss docunent

anal ysi s.

®The user will have even nore to say about thedocument's |ogical structure—the
sent ences, paragraphs, sections, chapters, and so forth. The physical structure
is lessinteresting by conparison. Mdst people don't care where the |inebreaksin
a par agraph occur as long as the paragraph is formatted properly. The sanme i s true
for formatting colutmms and pages. Thus users end upspecifying only high-1Ievel
constraints on the physical structure,leaving Lexi to do the hard work of

satisfying them

"The conposi tor must get the character codes of Character gl yphs in order to conpute
thelinebreaks. InSection2.8we' |l seehowtoget thisinformationpolynorphically

wi t hout addi ng acharacter-specific operation to the @ yph interface.
8That is, redoing an operation that was just undone.

®Conceptual |y, theclient is Lexi's user, but inrealityit's another object (such

as an event dispatcher) thatmanages inputs fromthe user.

owe coul d use function overl oadi ng t o gi ve each of these nemberfunctions the same
name, sincetheir paraneters already differenti atethem W' ve giventhemdifferent

names here to enphasize theirdifferences, especially when they're called.

1 sM sspel | ed inpl enents the spellingal gorithm which we won't detail here
because we've nade itindependent of Lexi's design. W can support different
al gori t hmsby subcl assi ng Spel | i ngChecker; alternatively, we canapplythe Strategy
(349) pattern (as we did for formatting in Section 2.3) to supportdifferent

spel | i ng checking al gorithns.

2'visit" is just a slightly noregeneral termfor "analyze." It foreshadows the

term nol ogy we use inthe design pattern we're |eading to.
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Design Pattern Catal og
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3. Creational Patterns

Creational design patterns abstract the instantiation process. They hel p make a
system i ndependent of howits objects are created, conposed, and represented. A
class creational pattern uses inheritanceto vary the class that's instanti ated,

wher eas an obj ect creational patternwi || del egateinstanti ati onto anot her object.

Creational patterns becone inportant as systens evol ve to depend noreon object
conposi tion than class inheritance. As that happens, enphasis shifts away from
hard- codi ng a fi xed set of behavi ors towarddefining a small er set of fundanent al
behavi ors t hat can be conposedi nt o any nunber of nore conpl ex ones. Thus creati ng

obj ects withparticul ar behaviors requires norethan sinply instantiatingaclass.

There are two recurring thenmes in these patterns. First, they allencapsul ate
know edge about whi ch concrete classes the system uses. Second, they hide how
i nstances of these classes are created and puttogether. Al the systemat |arge
knows about the objects is theirinterfaces as defined by abstract classes.
Consequently, thecreational patterns give you a lot of flexibility in what
getscreated, who creates it, howit gets created, and when. They | et you confi gure
a systemwi th "product" objects thatvary widely in structure and functionality.
Configuration can bestatic (that is, specified at conpile-tine) or dynam c

(atrun-time).

Somet i mes creational patterns are conpetitors. For exanpl e, there are cases when
ei ther Prototype (133)or Abstract Factory (99) coul dbe used profitably. At other
times they are conpl enentary: Builder (110) can use one of the otherpatterns to
i npl ement whi ch conponents get built. Prototype (133) can use Singleton (144)

inits inplenmentation.

Because the creational patterns are closely related, we'll study allfive of them
together to highlight their simlarities and differences. W' |l al so use a comrmon
exanpl e-buil ding a maze for a conputergame—to illustrate their inpl enentations.

The naze and the game willvary slightly frompattern to pattern. Sonetinmes the
gane wll besinply to find your way out of a maze; in that case the player

wi | | probably only have a | ocal viewof the maze. Soneti nes nazes contai nprobl ens
to solve and dangers to overcone, and these ganes may provi dea nap of the part

of the naze that has been expl ored.

We'll ignore many details of what can be in a maze and whether a mazegane has
a single or nultiple players. Instead, we'll just focus onhow nazes get created.
We define a maze as a set of roonms. A roonknows its nei ghbors; possi bl e nei ghbors

are another room a wall, or adoor to another room
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The cl asses Room Door, and Wall define the conponents of the maze used in all
our exanples. W defineonly the parts of these classes that are inportant for
creating amaze. We'll ignore players, operations for displaying and

wander i ngaround i n a maze, and other inportant functionality that isn'trel evant

to building the maze.

The foll ow ng diagram shows the rel ati onshi ps between these cl asses:

"'-Jl MapSite

Enteri)
sides Room Wall Door
Enter) Enter() Enter)

Maze SetSide()

FOOmS GetSidel) isOpen

P S

AddRoom()
Roomhol) roomMumber

Each roomhas four sides. W use an enuneration Direction i nC++ i npl ement ati ons

to specify the north, south, east, and west sides ofa room
enum Direction {North, South, East, West};

The Smal ltal k i npl ementations use correspondi ng synbols to representthese

directions.

The class MapSite is the common abstract class for all theconponents of a maze.
To sinplify the exanple, MapSite definesonly one operation, Enter. Its nmeaning
depends on what you'reentering. If you enter a room then your | ocation changes.
If you try toenter a door, then one of two things happen: If the door is open,

you gointo the next room If the door is closed, then you hurt your nose.

class MapSite {
public:
virtual void Enter() = 0;

b

Ent er provi des a si npl e basi s for nore sophi sti cat ed ganeoperati ons. For exanpl e,

if youareinaroomand say "Go East," thegane can sinply determ ne which MapSite
isimediately to theeast and then call Enter on it. The subcl ass-specificEnter
operation will figure out whether your |ocation changedor your nose got hurt.

Inareal ganme, Enter coul dtakethepl ayer object that's novi ng about as an argunent.
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Roomi s t he concret e subcl ass of MapSite thatdefinesthe key rel ati onshi ps between
conponentsinthe maze. Itmai ntai nsreferences toother MapSite objects and stores

aroom nunber. The nunber will identify roons in the naze.

class Room: public MapSite {
public:
Roon{i nt roomNo) ;

MapSite* Cet Side(Direction) const;
void SetSide(Direction, MapSite*);

virtual void Enter();

private:

MapSi te* _sides[4];
int _room\unber;

H

The followi ng classes represent the wall or door that occurs on eachside of a

room

class Wall : public MapSite {
public:

vall ()

virtual void Enter();

}s

class Door : public MapSite {
public:
Door (Roont = 0, Roont = 0);

virtual void Enter();

Roon* O her Si deFr om( Roont) ;

private:
Roont _roomi;
Roont _roong;

bool _isOpen;
}
We need to know about nore than just the parts of a naze. We'l| al sodefine a Maze

class to represent a collection of roonms. Maze can also find a particular room

given a room nunberusing its RoomNo operation.
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cl ass Maze {
public:
Maze();

voi d AddRoon{ Roont) ;
Roon* RoomNo(int) const;
private:

11
b

RoomNo coul d do a | ook-up using a |linear search, a hash table,or even a sinple
array. But we won't worry about such details here.lnstead, we'll focus on how

to specify the conponents of a maze object.

Anot her cl ass we define is MazeGane, which creates the nmaze. One straightforward
way to create a naze is with a series of operationsthat add conponents to a nmaze
and t hen i nterconnect them Forexanpl e, the foll owi ng nenmber functionw || create

a naze consistingof two roonms with a door between them

Maze* MazeGane:: CreateMaze () {

Maze* aMaze = new Maze;

Roont r1l new Roon{1);

Roon¥ r2 new Roon{ 2);

Door * t heDoor = new Door(r1, r2);

aMaze- >AddRoon(r1);
aMaze- >AddRoon{(r 2) ;

r1->Set Side(North, new Wall);
r1- >Set Si de( East, theDoor);
r1- >Set Si de( Sout h, new Wl l);
r1->Set Si de(West, new Vall);

r2->Set Si de(North, new Vall);
r2- >Set Si de( East, new Vall);
r2- >Set Si de( South, new Vall);
r2->Set Si de(West, theDoor);

return aMaze;

}

This functionis pretty conplicated, consideringthat all it does is createa nmaze
with two roons. There are obvious ways to make it sinpler. Forexanple, the Room

constructor could initialize the sideswith walls ahead of tinme. But that just
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noves the code sonewhere el se. The real problemw th this menber function isn't
its size but its inflexibility. It hard-codes the maze | ayout. Changing the

| ayout means changi ng this nenber function, either by overriding it—whichnmeans
rei mpl ementi ng the whol e thing—or by changing parts ofit—which is error-prone

and doesn't pronote reuse.

The creati onal patterns showhowto make this designnoreflexible, not necessarily
smaller. In particular, they will nake iteasy to change the cl asses that define

the conponents of a nmaze.

Suppose you wanted to reuse an exi sting naze | ayout for a new ganecont ai ni ng ( of
al | things) enchanted nmazes. The enchant ed naze ganme hasnew ki nds of conponents,
| i ke Door Needi ngSpel | , a door that can be | ocked and opened subsequently only wi th
a spell; andEnchant edRoom a roomthat can have unconventional itenms init, |ike
magi ¢ keys or spel | s. Howcan you change Creat eMazeeasily so that it creates nazes

with these new cl asses of objects?

Inthis case, the biggest barrier to change lies in hard-codi ng thecl asses that
get instantiated. The creational patterns providedifferent waystorenoveexplicit

references to concrete cl assesfrom code that needs to instantiate them

| f CreateMaze cal I svirtual functionsinsteadof constructorcallstocreate
the roons, walls, and doors it requires, then you canchange the cl asses

that get instantiated by maki ng a subcl ass of MazeGane and redefi ni ng t hose
virtual functions. This approachis an exanpl e of the Factory Method (121)
pattern.

If CreateMaze is passed an object as a paraneter to use tocreate roons,
wal | s, and doors, then you can change t he cl asses of roons, wal | s, and doors
by passing adifferent paraneter. This is anexanpl e of the Abstract Factory
(99) pattern.

I f CreateMaze i s passed an obj ect that can create a newnmazeinits entirety
usi ng oper ations for addi ng roons, doors, and wal |l s tothe maze it builds,
then you can use i nheritance to change parts ofthe maze or the way t he naze
is built. This is an exanple of the Builder (110) pattern.

| f CreateMaze is paraneteri zed by vari ous prototypical room door, and wal |
obj ects, whichit then copies and adds to the maze, t hen you can change t he
maze' s conposition by replacing theseprototypical objects with different

ones. This is an exanple of the Prototype (133) pattern.

The renmaining creational pattern, Singleton (144), canensure there's only one
maze per gane and that all ganme obj ects haveready access to it—wi thout resorting
to gl obal variabl es orfunctions. Singleton al somakes it easy to extend or repl ace

the mazew t hout touching existing code.
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Abstract Factory

¥ ntent

Provide aninterfacefor creatingfamlies of rel ated or dependent obj ects wi t hout

speci fying their concrete classes.

YAl so Known As
Ki t
YMoti vati on

Consi der auser interfacetool kit that supports nultiplelook-and-feel standards,
such as Motif and Presentati on Manager. Different | ook-and-feels definedifferent
appear ances and behavi ors for user interface "w dgets" |i ke scroll bars, wi ndows,
and buttons. To be portabl e across | ook- and-feel standards, an application shoul d
not hard-code its widgets for a particular |ook and feel. Instantiating

| ook- and-feel -specific classes of wi dgets throughout the application nakes it

hard to change the | ook and feel |ater.

W can sol ve t hi s probl emby defi ni ng an abstract W dget Factory cl ass t hat decl ares
an interface for creating each basic kind of widget. There's also an abstract
class for each kind of wi dget, and concrete subcl asses inplenent w dgets for

speci fic |l ook-and-feel standards. Wdget Factory'sinterface has anoperationthat
returns a new wi dget object for each abstract wi dget class. Clients call these
operations to obtain w dget instances, but clients aren't aware of the concrete
cl asses they're using. Thus clients stay i ndependent of the prevailing | ook and

feel.
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WidgetFactory (v | Cient

CraateScrolifan)

CreateWindow(} m
A

——|-| PMWindow | |Mmifmnduw }-——

MalifWidgetFaclory - PMWidgetFactory | ————-————- 1

CraateScrollBar|)
CroalaWindow])

o
CoreataWindowi)

teSorallBar])

—--I PMScrollBar | |McnlilScmlIEIar |-|——

There is a concrete subcl ass of WdgetFactory for each | ook-and-feel standard.
Each subcl ass i npl ements the operations to create the appropri ate w dget for the
| ook and feel. For exanple, the CreateScrol | Bar operation on the

Moti f Wdget Factory instantiates and returns a Motif scroll bar, while the
correspondi ng operation on the PMN dget Factory returns a scroll bar for
Presentation Manager. Clients create w dgets solely through the Wdget Factory
interface and have no know edge of the classes that inplenent widgets for a
particul ar | ook andfeel. Inother words, clientsonly havetoconmt toaninterface

defined by an abstract class, not a particular concrete class.

A W dget Factory al so enforces dependenci es between the concrete w dget cl asses.
A Motif scroll bar should be used with a Mdtif button and a Mitif text editor,
and that constraint is enforced automatically as a consequence of using a
Mot i f W dget Fact ory.

YApplicability

Use the Abstract Factory pattern when

a systemshoul d be i ndependent of howits products are created, conposed,
and represented.

a systemshoul d be configured with one of nultiple fam lies of products.

a fam |y of related product objects is designed to be used together, and
you need to enforce this constraint.

you want to provide a class library of products, and you want to reveal
just their interfaces, not their inplenmentations.

100



Design Patterns: Elenents of Reusable Object-Oriented Software

¥Structure

AbstractFactory =
CraatalProducta|)
CragtaProductB))
;
ConcreteFactoryl - ConcreteFactory2 | ...
CresteProductAf) CreataProducta) i
CrealaProductB() CraataProduciBy) E
¥
i

--w ProductB2 | | ProductBl fe--

YParticipants

Abstract Factory (W dget Factory)

(o]

decl ares an interface for operations that create abstract product

obj ect s.

ConcreteFactory (MtifWdgetFactory, PMAN dget Factory)

(o]

(o]

(o]

(o]

i mpl ements the operations to create concrete product objects.

Abstract Product (W ndow, Scroll Bar)

declares an interface for a type of product object.

Concr et eProduct (MtifWndow, MdtifScroll Bar)

defines a product obj ect to be created by the correspondi ng concrete

factory.

i mpl enents the AbstractProduct interface.

dient

(o]

uses only interfaces decl ared by AbstractFactory and

Abstract Product cl asses.

¥Col | aborati ons

Normal |y a si ngl einstance of a ConcreteFactory classiscreatedat run-tine.
This concrete factory creates product objects having a particul ar

i mpl enentati on. To create different product objects, clients should use

a different concrete factory.

Abstract Fact ory defers creati on of product objects toits ConcreteFactory

subcl ass.
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¥Consequences

The Abstract Factory pattern has the follow ng benefits and liabilities:

1. Itisolatesconcreteclasses. The Abstract Factory pattern hel ps youcontrol
the classes of objects that an application creates. Because a factory
encapsul ates theresponsibility andthe process of creatingproduct objects,
it isolates clients frominplenentation classes. Cients nanipul ate
i nstances through their abstract interfaces. Product class names are
isolated inthe inplenentation of the concrete factory; they do not appear
in client code.

2. 1t makes exchangi ng product fam |ies easy. The cl ass of a concrete factory
appears only once inan application—that is, whereit'sinstantiated. This
makes it easy to change the concrete factory an application uses. It can
use different product configurations sinply by changing the concrete
factory. Because an abstract factory creates a conpl ete fam |y of products,
t he whol e product fam |y changes at once. In our user interface exanple,
we can switch fromMtif w dgets to Presentati on Manager wi dgets sinply
by switching the corresponding factory objects and recreating the
i nterface.

3. It pronotes consistency anong products. When product objects ina famly
are designed to work together, it's inmportant that an application use
objects fromonly one famly at a tinme. AbstractFactory makes this easy
to enforce.

4. Supportingnewkinds of productsisdifficult. Extendingabstract factories
to produce new kinds of Products isn't easy. That's because the
Abstract Factory interface fixes the set of products that can be created.
Supporting newki nds of products requires extendingthe factoryinterface,
whi chi nvol ves changi ng t he Abstract Factory cl ass andal | of its subcl asses.

We di scuss one solution to this problemin the Inplenentation section.

Y| npl enent ati on

Here are sonme useful techniques for inplementing the Abstract Factory pattern.

1. Factories as singletons. An application typically needs only one instance
of a ConcreteFactory per product fanmily. Soit's usually best inplenmented
as a Singleton (144).

2. Creating the products. AbstractFactory only declares an interface for
creatingproducts. It'supto ConcreteProduct subcl assestoactually create
them The nobst conmon way to do this is to define a factory nethod (see

Factory Method (121)) for each product. A concrete factory will specify
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make:

its products by overriding the factory nmethod for each. Wile this
implenentationis sinple, it requires a newconcrete factory subcl ass for

each product famly, even if the product famlies differ only slightly.

If many product fanmilies are possible, the concrete factory can be

i mpl enent ed using the Prototype (133) pattern. The concrete factory is
initialized with a prototypical instance of each product in the fanily,
and it creates a newproduct by cloningits prototype. The Prot ot ype-based
approach el i mi nates the need for a newconcrete factory cl ass for each new

product famly.

Here's a way to inplenment a Prototype-based factory in Smalltalk. The
concrete factory stores the prototypes to be cloned in adictionary called

part Cat al og. The nethod meke: retrieves the prototype and clones it:

par t Nanme

N (partCatal og at: partNanme) copy

The concrete factory has a nethod for adding parts to the catal og.

addPart: partTenpl ate naned: partName

partCatal og at: partName put: partTenpl ate

Prototypes are added to the factory by identifying themw th a synbol:

aFactory addPart: aPrototype nanmed: #ACMEW dget

Avariation on the Prototype-based approach i s possi bl e in | anguages that
treat classes as first-class objects (Smalltalk and Objective C, for
exanpl e). Youcanthinkof aclassintheselanguages as a degenerate factory
that creates only one kind of product. You can store classes inside a
concrete factory that create the various concrete products in vari abl es,
much |i ke prototypes. These cl asses create newinstances on behal f of the
concrete factory. You define a newfactory by initializing an instance of
a concrete factory with classes of products rather than by subcl assi ng.
Thi s approach t akes advant age of | anguage characteristics, whereas the pure

Pr ot ot ype- based approach is | anguage-i ndependent.

Li ke the Prototype-based factory in Smalltalk just discussed, the

cl ass-based versionwi || have a si ngl ei nstance vari abl e part Cat al og, whi ch
is a dictionary whose key is the name of the part. Instead of storing
prototypes to be cloned, partCatal og stores the cl asses of the products.

The met hod make: now | ooks like this:

make: part Nane

103



Design Patterns: Elenents of Reusable Object-Oriented Software

N (partCatal og at: partNane) new

3. Definingextensiblefactories. AbstractFactory usually definesadifferent
operation for each kind of product it can produce. The kinds of products
are encoded in the operation signatures. Adding a new kind of product
requi res changing the Abstract Factory interface and all the cl asses that

depend on it.

A nore flexible but |ess safe design is to add a paraneter to operations
that create objects. This paranmeter specifies the kind of object to be
created. It could be aclass identifier, aninteger, astring, or anything
el se that identifies the kind of product. In fact with this approach,
Abstract Factory only needs a single "Make" operation with a paraneter
i ndi cating the ki nd of object tocreate. This is the technique used inthe

Prototype- and the class-based abstract factories discussed earlier.

This variation is easier to use in a dynamcally typed | anguage |ike

Smaelltalk than in a statically typed | anguage |i ke C++. You can use it in
C++ only when all objects have the same abstract base class or when the
product objects can be safely coerced to the correct type by the client
that requested them The inplenmentation section of Factory Method (121)

shows how to inplenment such paraneterized operations in C++.

But even when no coercion is needed, an inherent problemremains: All

products are returned to the client with the sane abstract interface as
given by the return type. The client will not be able to differentiate or
make safe assunptions about the class of a product. If clients need to
per f or msubcl ass- speci fi c operati ons, they won't be accessi bl e throught he
abstract interface. Al though the client could performa downcast (e.g.,
with dynam c_cast in C++), that's not al ways feasible or safe, because the
downcast can fail. This is the classic trade-off for a highly flexible and

extensi bl e interface.

¥Sanpl e Code

We'll apply the Abstract Factory pattern to creating the mazes we di scussed at

the beginning of this chapter.

Cl ass MazeFactory can create conponents of mazes. It builds roons, walls, and
doors between roons. It mght be used by a programthat reads plans for mazes
froma file and builds the correspondi ng naze. O it mght be used by a program
that builds mazes randomy. Programs that build nmazes take a MazeFactory as an
argunent so that the progranmer can speci fy the cl asses of roons, walls, and doors

to construct.
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cl ass MazeFactory {

public:
MazeFactory();
virtual Maze* MakeMaze() const

{ return new Maze; }

virtual Wall* MakeWall () const
{ return new Wall; }
virtual Roont MakeRoon(int n) const

{ return new Roonm(n); }

virtual Door* MakeDoor (Roont r1, Roonf r2) const
{ return new Door(r1, r2); }
}
Recal | that the nmenber function CreateMaze builds a smal |

roons with a door

bet ween them CreateMaze hard-codes the class nanes,

maze consi sting of two

maki ng

it difficult to create mazes with different conmponents.

Here's a version of CreateMaze that

MazeFactory as a paraneter:

renmedi es that shortcom ng by taking a

Maze* MazeGane:: CreateMaze (MazeFactory& factory) {

Maze* aMaze =
Roont r1 = factory. MakeRoon(1);

Roont r2 = factory. MakeRoom( 2);

Door* abDoor = factory. MakeDoor (r1,

aMaze- >AddRoon(r1);
aMaze- >AddRoon{(r 2) ;

r1- >Set Si de( Nort h,
r1- >Set Si de( East, abDoor);
r 1- >Set Si de( Sout h,

r1- >Set Si de( Vst ,

r2->Set Si de(Nort h,
r2->Set Si de( East,

r 2- >Set Si de( Sout h,
r2- >Set Si de(West, abDoor);

return aMaze;

factory. MakeMaze();

r2);

factory. MakeWal | ());

factory. MakeWal | ());
factory. MakeVal | ());

factory. MakeVal | ());
factory. MakeVal | ());
factory. MakeVal | ());

105



Design Patterns: Elenents of Reusable Object-Oriented Software

W can creat e Enchant edMazeFactory, a factory for enchant ed nazes, by subcl assi ng
MazeFact ory. Enchant edMazeFactory will override different nmenber functions and

return different subcl asses of Room Wall, etc.

cl ass Enchant edMazeFactory : public MazeFactory {
public:
Enchant edMazeFactory();

virtual Roont MakeRoon{int n) const
{ return new Enchant edRoon(n, CastSpell()); }

virtual Door* MakeDoor(Roont rl1, Roont r2) const
{ return new Door Needi ngSpel | (r1, r2); }

prot ect ed:

Spel | * Cast Spel | () const;
h

Now suppose we want to make a naze gane in which a roomcan have a bonb set in
it. I'f the bonb goes off, it will danage the walls (at | east). We can make a subcl ass
of Roomkeep track of whether the roomhas a bonb in it and whether the bonb has
gone off. We'll also need a subclass of Wall to keep track of the danage done
to the wall. We'll call these classes RoomWthABonb and BonbedWall .

The |l ast class we'll defineis BonbedMazeFactory, a subcl ass of MazeFactory that
ensures walls are of class BonbedWall and roons are of class RoomWthABonb.

BonbedMazeFactory only needs to override two functions:

Wal | * BonbedMazeFactory:: MakeWal | () const {
return new BonbedWal | ;

Roon* BonbedMazeFact ory:: MakeRoon{int n) const {
return new RoomW t hABonb(n);

To build a sinple naze that can contain bonmbs, we sinply call CreateMaze with
a BonbedMazeFactory.

MazeCGane gane;

BonbedMazeFactory factory;
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gane. Creat eMaze(factory);

Creat eMaze can take an instance of EnchantedMazeFactory just as well to build

enchant ed nazes.

Notice that the MazeFactory is just a collection of factory nethods. This is the
nost conmon way to inplement the Abstract Factory pattern. Also note that
MazeFactory is not an abstract class; thus it acts as both the AbstractFactory
and the ConcreteFactory. This is another common inplenentation for sinple
applications of the Abstract Factory pattern. Becausethe MazeFactoryis aconcrete
class consisting entirely of factory nethods, it's easy to nake a new MazeFactory

by maki ng a subclass and overriding the operations that need to change.

Creat eMaze used t he Set Si de operation on roons to specify their sides. If it
creates roons with a BonbedMazeFactory, then the maze will be made up of
RoomAi t hABonb obj ects with BombedWall sides. |If RoomNthABonmb had to access a
subcl ass-speci fic nmenmber of BonbedWall, then it would have to cast a reference
toits walls fromWall* to BonmbedWal | *. This downcasting is safe as | ong as the
argunent is in fact a BombedWall, which is guaranteed to be true if walls are

built solely with a BonbedVazeFactory.

Dynami cal | y t yped | anguages such as Snmal I t al k don't requi re downcasti ng, of course,
but they m ght produce run-tine errors if they encounter a Wal|l where they expect
a subcl ass of Wall. Using Abstract Factory to build walls hel ps prevent these

run-time errors by ensuring that only certain kinds of walls can be created.

Let' s consi der a Snal | tal k versi on of MazeFactory, one wi t h a si ngl e nake operati on
t hat takes t he ki nd of obj ect t o make as a par anet er. Moreover, the concretefactory

stores the classes of the products it creates.

First, we'll wite an equival ent of CreateMaze in Smalltalk:

createMaze: aFactory

| roonl roon? aDoor |

roonl := (aFactory meke: #room nunber: 1.
roon?2 := (aFactory nake: #roon) nunber: 2.

aDoor

(aFactory make: #door) from rooml to: roonR.
rooml at Side: #north put: (aFactory nake: #wall).
rooml at Side: #east put: aDoor.

rooml at Side: #south put: (aFactory nake: #wall).
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rooml at Side: #west put: (aFactory nake: #wall).
roon? atSide: #north put: (aFactory nake: #wall).
roon? atSide: #east put: (aFactory nake: #wall).
roon2 atSide: #south put: (aFactory make: #wall).
roonR atSide: #west put: aDoor.

N Maze new addRoom roonil; addRoom roon®; yourself

As we discussed in the Inplementation section, MazeFactory needs only a single
i nstance vari abl e partCatal og to provide a dictionary whose key is the class of

the conponent. Al so recall how we inplenented the make: met hod:

make: part Nanme

N (partCatal og at: partNane) new

Now we can create a MazeFactory and use it to i npl enent createMaze. W' |l create

the factory using a nethod createMazeFactory of class MazeGane.

creat eMazeFactory
N (MazeFactory new
addPart: Wall naned: #wall;
addPart: Room named: #room
addPart: Door named: #door;

yoursel f)

A BonmbedMazeFact ory or Enchant edMazeFactory i s created by associating different
cl asses with the keys. For exanpl e, an Enchant edMazeFactory coul d be created | i ke
this:

creat eMazeFactory
N (MazeFactory new
addPart: Wall nanmed: #wall;
addPart: Enchant edRoom named: #room
addPart: Door Needi ngSpel | named: #door;

your sel f)

¥YKnown Uses

InterViews uses the "Kit" suffix [Lin92] to denote AbstractFactory classes. It
defines WdgetKit and DialogKit abstract factories for generating
| ook-and-feel -specific user interface objects. InterViews also includes a

LayoutKit that generates different conposition objects depending on the | ayout
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desired. For exanple, a layout that is conceptually horizontal may require
di fferent conposition objects dependi ng on the docunment's orientation (portrait

or | andscape).

ET++ [ WGMB8] uses the Abstract Factory pattern to achieve portability across

di fferent wi ndow systenms (X Wndows and SunVi ew, for exanple). The W ndowSystem
abstract base class defines the interface for creating objects that represent
wi ndow syst emr esour ces ( MakeW ndow, MakeFont, MakeCol or, for exanpl e). Concrete
subcl asses i nplenment the interfaces for a specific w ndow system At run-tine,
ET++ creates an i nstance of a concrete W ndowSyst emsubcl ass t hat creates concrete

system resource objects.

YRel ated Patterns

Abstract Factory cl asses areofteninplementedw thfactory nmet hods (Fact ory Met hod

(121)), but they can also be inplenmented using Prototype (133).

A concrete factory is often a singleton (Singleton (144)).
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Bui | der

¥ ntent

Separate the construction of a conplex object fromits representation so that

the sane construction process can create different representations.

YMoti vati on

A reader for the RTF (Rich Text Format) document exchange format shoul d be able
to convert RTF to nmany text formats. The reader m ght convert RTF documents into
plain ASClI | text or intoatext wi dget that canbeeditedinteractively. The probl em
however, is that the nunber of possible conversions is open-ended. So it shoul d

be easy to add a new conversion w thout nodifying the reader.

A solutionis to configure the RTFReader class with a Text Converter object that
converts RTF to anot her textual representation. As the RTFReader parses the RTF
docunent, it uses the TextConverter to performthe conversion. Wenever the
RTFReader recogni zes an RTF token (either plain text or an RTF control word),
it issues a request to the TextConverter to convert the token. TextConverter
obj ects are responsible both for performng the data conversion and for

representing the token in a particular fornmat.

Subcl asses of Text Converter specializeindifferent conversions and formats. For
exanpl e, an ASCI | Converter i gnores requeststoconvert anything except plaintext.
A TeXConverter, on the other hand, will inplement operations for all requests
in order to produce a TeX representation that captures all the stylistic
information in the text. A TextW dget Converter will produce a conpl ex user

interface object that lets the user see and edit the text.
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HATFReader
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- ASClHText = TeXText - TextWidget

Each ki nd of converter class takes the nechanismfor creating and assenbling a
conmpl ex obj ect and puts it behind an abstract interface. The converter i s separate

fromthe reader, which is responsible for parsing an RTF docunent.

The Builder pattern captures all these relationships. Each converter class is
called a builder inthe pattern, and the reader is called the director. Applied
to this exanple, the Builder pattern separates the algorithmfor interpreting
a textual format (that is, the parser for RTF docunents) from how a converted
format gets created and represented. This lets us reuse the RTFReader's parsing
algorithmto create different text representations from RTF document s—j ust

configure the RTFReader with different subclasses of TextConverter.

YApplicability

Use the Buil der pattern when

the algorithmfor creating a conpl ex object should be i ndependent of the
parts that nake up the object and how they're assenbl ed.

the construction process nmust allow different representations for the
obj ect that's constructed.
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¥YStructure

Director q::bu”d'"ﬂ‘f Builder

Construch) n BuildPartf)
T
I
1
I
1
1

for ali objects in structure | =

} builder—>BuildPan() ConcreteBuilder [----—--— = Product
BuildPart(}
GetHesult)

YPartici pants

Bui | der (Text Converter)
0 specifies an abstract interface for creating parts of a Product

obj ect .
Concr et eBui | der (ASCl | Converter, TeXConverter, TextW dget Converter)

0 constructs and assenbl es parts of the product by inplenmenting the
Bui | der interface.
defines and keeps track of the representation it creates.
provides aninterfacefor retrievingtheproduct (e.g., Get ASCl | Text,
Cet Text W dget) .

Di rector (RTFReader)
O constructs an object using the Builder interface.
Product (ASCl I Text, TeXText, TextW dget)

O represents the conpl ex obj ect under construction. ConcreteBuil der
bui l ds the product' sinternal representati onanddefinestheprocess
by which it's assenbl ed.

0 includes classes that define the constituent parts, including

interfaces for assenbling the parts into the final result.

¥Col | aborati ons

The client creates the Director object and configures it with the desired
Bui | der object.

Director notifiesthebuil der whenever apart of t he product shoul d be built.
Bui | der handl es requests fromthe director and adds parts to the product.

The client retrieves the product fromthe builder.
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The followi ng i nteraction diagramillustrates howBuil der and Di rector cooperate

with a client.

aClient aDirector aConcreteBuilder
il | |

new ConcrateBuilder !

Construct() I

BuildPartal) -
BuildPartB() -I
BuildPartC() -I
GelHesult() T
L
YConsequences

Here are key consequences of the Builder pattern:

1. It lets you vary a product's internal representation. The Buil der object
provides the director with an abstract interface for constructing the
product. Theinterfacel etsthebuil der hidetherepresentati onandinternal
structure of the product. It also hides how the product gets assenbl ed.
Because t he product is constructed through an abstract interface, all you
have t o do to change the product's internal representationis define a new
kind of buil der.

2. It isolates code for construction and representation. The Buil der pattern
i mproves nodul ari ty by encapsul atingtheway aconpl ex obj ect i s constructed
andrepresented. Clientsneedn't knowanyt hi ng about t he cl asses t hat defi ne
the product's internal structure; such classes don't appear in Builder's

interface.

Each ConcreteBuilder contains all the code to create and assenble a
particul ar kind of product. The code is witten once; then different
Directors canreuseit tobuildProduct variants fromthe sane set of parts.
In the earlier RTF exanple, we could define a reader for a format other
than RTF, say, an SGWLReader, and use t he sanme Text Converters to generate
ASCI | Text, TeXText, and Text Wdget renditions of SGW docunents.

3. It gives youfiner control over the construction process. Unlike creational

patternsthat construct productsinoneshot, theBuil der patternconstructs
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t he product step by step under thedirector's control. Only when t he product
isfinisheddoesthedirector retrieveit fromthebuilder. Hencet he Buil der
interfacereflects the process of constructing the product nore than ot her
creational patterns. This gives you finer control over the construction

process and consequently the internal structure of the resulting product.

Y| npl enent ati on

Typically there's an abstract Builder class that defines an operation for each
component that adirector may askit tocreate. The operati ons do not hi ng by defaul t.
A ConcreteBuil der class overrides operations for components it's interested in

creating.
Here are other inplenentation issues to consider:

1. Assenbly and construction interface. Builders construct their products in
st ep- by-step fashi on. Thereforethe Buil der classinterface must be general
enough to allow the construction of products for all kinds of concrete

bui | ders.

A key design issue concerns the nodel for the construction and assenbly
process. A nodel where the results of construction requests are sinply
appended to the product is usually sufficient. In the RTF exanple, the
bui | der converts and appends the next token to the text it has converted

so far.

But sonetinmes you m ght need access to parts of the product constructed
earlier. Inthe Maze exanpl e we present inthe Sanpl e Code, the MazeBui | der
interface l ets you add a door between exi sting roons. Tree structures such
as parse trees that are built bottomup are anot her exanple. Inthat case,
the bui |l der woul d return child nodes tothe director, whichthen woul d pass

them back to the builder to build the parent nodes.

2. Wy no abstract class for products?1ntheconmon case, the products produced
by the concrete builders differ so greatly in their representation that
thereislittletogainfromgivingdifferent products acomon parent cl ass.
In the RTF exanpl e, the ASCI | Text and the Text W dget objects are unlikely
to have a common i nterface, nor dothey need one. Because the client usually
configures the director with the proper concrete builder, the client is
inapositionto knowwhich concrete subcl ass of Builder is in use and can
handl e its products accordingly.

3. Enpty nethods as default in Builder. In C++, the build nethods are

intentionally not decl ared pure virtual nmenber functions. They're defined
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as enpty methods instead, letting clients override only the operations

they're interested in.

¥Sanpl e Code

W'l | define a variant of the CreateMaze nenber function that takes a buil der

of class MazeBuil der as an argument.

The MazeBuil der class defines the following interface for building mazes:

cl ass MazeBuil der {
public:
virtual void BuildMaze() { }
virtual void BuildRoon(int room { }

virtual void BuildDoor(int roonFrom int roonio) { }

virtual Maze* GetMaze() { return O; }
pr ot ect ed:

MazeBui | der () ;
b

This interface can create three things: (1) the maze, (2) roons with a particul ar
roomnunber, and (3) doors between nunbered roons. The Get Maze operati on returns
the naze to the client. Subclasses of MazeBuilder will override this operation
to return the nmaze that they build.

Al'l the naze-buil di ng operations of MazeBuil der do nothing by default. They're
not declared pure virtual to let derived cl asses override only those nethods in
whi ch they're interested.
G ven the MazeBuil der interface, we can change the CreateMaze nember function
to take this builder as a paraneter.
Maze* MazeGane:: Creat eMaze (MazeBuil der& builder) {

bui I der . Bui | dMaze();

bui I der . Bui | dRoon( 1) ;

bui I der . Bui | dRoon( 2) ;

bui | der. Bui | dDoor (1, 2);

return buil der. Get Maze();
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Conpare this version of CreateMaze with the original. Notice howthe buil der hides
the internal representation of the Maze—that is, the classes that define roons,
doors, and wal | s—and how these parts are assenbled to conplete the final naze.
Someone m ght guess that there are cl asses for representing roons and doors, but
there is no hint of one for walls. This nmakes it easier to change the way a naze

is represented, since none of the clients of MazeBuilder has to be changed.

Li ke t he ot her creational patterns, the Buil der pattern encapsul ates how obj ects
get created, inthis casethroughtheinterface defined by MazeBui |l der. That neans
we can reuse MazeBuil der to buil d different kinds of nazes. The Creat eConpl exMaze

operation gives an exanpl e:

Maze* MazeGane:: Creat eConpl exMaze (MazeBuil der & buil der) {
bui I der . Bui | dRoon( 1) ;
11
bui | der. Bui | dRoon( 1001) ;

return buil der. Get Maze();

Not e t hat MazeBuil der does not create mazes itself; its main purpose is just to
defineaninterfacefor creati ngnazes. It defines enptyinpl enentations prinmarily

for conveni ence. Subcl asses of MazeBuilder do the actual work.

The subcl ass St andardMazeBui | der is an i npl enentation that buil ds sinple mazes.

It keeps track of the maze it's building in the variable _currentMaze.

cl ass StandardMvazeBuil der : public MazeBuil der {
public:
St andar dvazeBui | der () ;

virtual void Buil dWaze();
virtual void Buil dRoon(int);

virtual void BuildDoor(int, int);

virtual Maze* CetMaze();
private:
Di rection ComonWal | (Roont, Roont);

Maze* _current Maze;

}s

CommonWal | is a utility operation that determ nes the direction of the comon

wal | between two roons.
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The StandardMazeBuil der constructor sinply initializes _currentMze.

St andar dMazeBui | der: : St andar dMazeBui | der () {

_current Maze = 0;

Bui | dvaze i nstanti ates a Maze that ot her operations will assenbl e and eventual |y
return to the client (with Get Maze).

voi d StandardMazeBui | der: : Bui |l dvaze () {

_current Maze = new Maze;

Maze* Standar dMazeBuil der:: Get Maze () {

return _current Maze;

The Buil dRoom operation creates a roomand builds the walls around it:

voi d StandardMazeBui | der: : Bui |l dRoom (int n) {
if (!_currentMaze->RoomNo(n)) {
Roont room = new Roon(n);

_current Maze- >AddRoon{ room ;

room >Set Si de(North, new Vall);
room >Set Si de( South, new Wall);
room >Set Si de( East, new Wall);

room >Set Si de(West, new Wall);

To build a door between two roons, StandardMazeBuil der |ooks up both roons in
the maze and finds their adjoining wall:

voi d StandardMazeBuil der:: Buil dDoor (int ni1, int n2) {
Roont r1 = _current Maze- >RoonNo( nl);
Roon* r2 = _current Maze- >RoonNo( n2);
Door* d = new Door(rl, r2);

r1- >Set Si de( CommonWal | (r1,r2), d);
r2- >Set Si de( CommonWal | (r2,r1), d);
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Clients can nowuse CreateMaze in conjunction with StandardMazeBuil der to create

a nmaze:

Maze* maze;
MazeGane garne;

St andar dMazeBui | der bui | der;

gane. Creat eMaze( bui | der);
maze = buil der. Get Maze();

We coul d have put all the StandardMazeBuil der operations in Maze and | et each
Maze buil ditsel f. But maki ng Maze smal | er makes it easi er t o under st and and nodi fy,
and StandardMazeBuil der is easy to separate from Maze. Mst inportantly,

separating the two | ets you have a vari ety of MazeBuil ders, each using different

cl asses for roons, walls, and doors.

A nore exotic MazeBuilder is CountingMazeBuilder. This builder doesn't create
a naze at all; it just counts the different ki nds of conponents that woul d have

been creat ed.

cl ass CountingMazeBuil der : public MazeBuilder {
public:
Count i ngMazeBui | der () ;

virtual void BuildMaze();
virtual void BuildRoon(int);
virtual void BuildDoor(int, int);

virtual void Addwall (int, Direction);

void GetCounts(int& int& const;

private:
int _doors;
int _roons;
b

The constructor initializes the counters, and the overridden MazeBuil der

operations increnent them accordingly.

Count i ngMazeBui | der: : Counti ngMazeBui | der () {
_roonms = _doors = 0;
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voi d CountingMazeBuil der:: Buil dRoom (int) {

_r 00nMB++;

voi d CountingMazeBui |l der: : BuildDoor (int, int) {

_door s++;

voi d CountingMazeBuil der:: Get Counts (

int& roons, int& doors

) const {
roons = _roons;
doors = _doors;
}

Here's how a client night use a CountingMVazeBuil der:

int roons, doors;
MazeCGane gane;

Count i ngMazeBui | der bui l der;

gane. Creat eMaze( bui | der);
bui | der. Get Count s(roons, doors);

cout << "The maze has

<< roons << roonms and "

<< doors << " doors" << endl;

¥YKnown Uses

The RTF converter applicationis fromET++ [W3VB8]. Its text building bl ock uses

a builder to process text stored in the RTF format.

Builder is a conmon pattern in Smalltal k-80 [Par90]:

The Parser class in the conpiler subsystemis a Director that takes a
Pr ogr amNodeBui | der obj ect as an argunment. A Parser object notifies its

Pr ogr amNodeBui | der obj ect each tinme it recogni zes a syntactic construct.
Wen the parser is done, it asks the builder for the parse tree it built

and returns it to the client.
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Cl assBuil der is a builder that Cl asses use to create subclasses for

thenselves. In this case a Class is both the Director and the Product.
Byt eCodeStreamis a buil der that creates a conpil ed met hod as a byte array.
Byt eCodeStreamis a nonstandard use of the Buil der pattern, because the
compl ex object it buildsisencodedasabytearray, not asanormal Smalltalk
object. But the interface to ByteCodeStreamis typical of a builder, and
it would be easy to replace ByteCodeStreamwith a different class that

represented progranms as a conposite object.

The Service Configurator framework fromthe Adapti ve Conmuni cati ons Envi ronnment
uses a builder to construct network service conponents that are linked into a
server at run-tinme [SS94]. The conponents are described with a configuration

| anguage that's parsed by an LALR(1) parser. The semantic actions of the parser
performoperations on the builder that add i nformation to the service conponent.

In this case, the parser is the Director.

YRel ated Patterns

Abstract Factory (99) is simlar toBuilder inthat it too may construct conpl ex
objects. Theprimary differenceisthat theBuil der patternfocuses onconstructing
a conpl ex obj ect step by step. Abstract Factory's enphasisisonfanilies of product
objects (either sinple or conplex). Builder returns the product as a final step,
but as far as the Abstract Factory patternis concerned, the product gets returned

i medi ately.

A Conposite (183) is what the buil der often buil ds.
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Fact ory Met hod

¥ ntent

Define aninterface for creating an obj ect, but | et subcl asses deci de whi ch cl ass

to instantiate. Factory Method lets a class defer instantiation to subclasses.

YAl so Known As

Virtual Constructor

YMoti vati on

Framewor ks use abstract classes to define and naintain relati onshi ps between

objects. Aframework is often responsible for creating these objects as well.

Consi der a franmework for applications that can present multiple docunents to the
user. Two key abstractions in this framework are the cl asses Application and
Docunent. Both cl asses are abstract, and clients have to subcl ass themto realize
their application-specificinplenentations. Tocreate a draw ng application, for
exanpl e, we define the classes Draw ngApplication and Draw ngDocunent. The
Application class is responsible for managi ng Docunents and will create themas

requi red—when the user selects Open or New froma nmenu, for exanple.

Because t he particul ar Docunment subclass toinstantiateis application-specific,
the Application class can't predict the subclass of Docunent to i nstantiate—the
Application class only knows when a new docurment shoul d be creat ed, not what ki nd
of Document to create. This creates a dilemma: The framework nust instantiate

cl asses, but it only knows about abstract cl asses, which it cannot instantiate.

The Factory Method pattern offers a solution. It encapsul ates the know edge of

whi ch Docunent subcl ass to create and noves thi s know edge out of the framework.
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docs

Openf)
Close()
Savel)
Rewvert()

>

MyDocument

Application subcl asses redefine an abstract CreateDocunent operation on

Application to return the appropriate Document subcl ass.

Application

Createlocument(
MewDocument) ol - ——————__
OpenDocument()

MyApplication

CraateDocument()

Document” doc = CreateDocument(); h

docs Addidoc):
doc—=0pan();

return new MyDocument

Once an Application

subclass isinstantiated, it cantheninstantiate application-specific Documents

wi t hout knowi ng their class. W cal |l CreateDocunment a factory net hod becauseit's

responsi bl e for "manufacturing”

YApplicability

an object.

Use the Factory Method pattern when

a class can't anticipate the class of objects it nust create.

a class wants its subclasses to specify the objects it creates.

cl asses del egate responsibility to one of several

hel per subcl asses, and

you want to |l ocal i zethe know edge of whi ch hel per subcl ass i s the del egate.

¥YStructure

Product

ConcreteProduct [N

Creator

FactoryMeathod()

=]

product = FactoryMathod)

AnDparation() o=
ConcreleCreator
FactoryMethod{} ©-

return new CoencreteProduct
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YParticipants

Product (Docunent)

0 defines the interface of objects the factory nethod creates.
Concr et eProduct (MyDocumnent)

O inplenents the Product interface.
Creator (Application)

0 declaresthefactory nethod, whichreturns anobject of type Product.
Creator may also define a default inplenentation of the factory
nmet hod that returns a default ConcreteProduct object.

O may call the factory nethod to create a Product object.

Concr et eCreator (M/Application)
O overrides the factory method to return an instance of a

Concr et ePr oduct .

¥Col | aborati ons

Creator relies on its subclasses to define the factory nmethod so that it
returns an instance of the appropriate ConcreteProduct.

¥Consequences

Factory nmet hods el i mi nate t he need to bi nd application-specific classes into your
code. The code only deals with the Product interface; therefore it can work with

any user-defined ConcreteProduct classes.

Apotential di sadvantage of factory nethods is that clients m ght have t o subcl ass
the Creator class just tocreate aparticul ar Concret eProduct obj ect. Subcl assi ng
is fine when the client has to subclass the Creator class anyway, but otherw se

the client now nust deal w th another point of evolution.
Here are two additional consequences of the Factory Method pattern:

1. Provides hooks for subclasses. Creating objects inside a class with a
factory method is al ways nore flexible than creating an object directly.
Factory Met hod gi ves subcl asses a hook for providing an extended versi on

of an object.

In the Docunment exanpl e, the Docunent class coul d define a factory nethod
called CreateFileDi alog that creates a default file dialog object for
openi ng an exi sting docunent. A Document subclass can define an

application-specificfiledialogbyoverridingthisfactorynethod. Inthis
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case the factory nethod i s not abstract but provi des a reasonabl e defaul t

i mpl enent ati on.

Connects parallel class hierarchies. Inthe exanples we've consi dered so
far, the factory nmethod is only called by Creators. But this doesn't have
to be the case; clients can find factory nmet hods useful, especially inthe

case of parallel class hierarchies.

Parall el class hierarchies result when a class del egates sonme of its
responsibilities to a separate cl ass. Consider graphical figures that can
be mani pul ated interactively; that is, they can be stretched, noved, or
rot at ed usi ng t he nouse. | npl enenting suchinteractionsisn't always easy.
It often requires storing and updating i nformation that records the state
of the nmanipulation at a given tine. This state is needed only during
mani pul ati on; thereforeit needn't be kept in the figure object. Mreover,
di fferent figures behave differently when the user nani pul ates them For
exanpl e, stretchingalinefiguremght havetheeffect of nobvi ngan endpoi nt,

whereas stretching a text figure may change its |ine spacing.

Wth these constraints, it's better to use a separate Mani pul at or obj ect
that inplements the interaction and keeps track of any

mani pul ati on-specific state that's needed. Different figures will use
di fferent Mani pul ator subcl asses to handl e particul ar interactions. The
resul ting Mani pul ator class hierarchy parallels (at | east partially) the

Figure cl ass hierarchy:

Dragy)

Craateldanipulaton) DrownCiickyt

UpClick()
A ;

LineFigura TextFigura Linefanipulator TextManipulator
CreateManipuiator]) Creatahtanipulaton) DownClck{) DownClick])
Dragiy Drragi)
H H i UpClick{) I UipClick(}
I I !

The Figure class provides a CreateMani pulator factory nmethod that lets
clients create a Figure's correspondi ng Mani pul ator. Fi gure subcl asses
override this method to return an i nstance of the Manipul ator subcl ass
that's right for them Alternatively, the Figure class nmay inplenent

Creat eMani pul ator to return a default Manipul ator instance, and Figure
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subcl asses may sinply inherit that default. The Fi gure classes that do so
need no correspondi ng Mani pul at or subcl ass—hence t he hierarchies are only

partially parallel.

Noti ce howthe factory net hod defines the connecti on between t he two cl ass

hierarchies. It localizes know edge of which classes bel ong together.

Y| npl enent ati on

Consi der the follow ng issues when applying the Factory Method pattern:

1. Two major varieties. The two main variati ons of the Factory Method pattern
are (1) the case when the Creator class is an abstract cl ass and does not
provi de an i mpl ementation for the factory nmethod it declares, and (2) the
case when the Creator is a concrete class and provides a default
i mpl enentation for the factory nethod. It's also possible to have an
abstract class that defines a default inplenmentation, but this is less

common.

The first case requires subclasses to define an inplenentation, because
there's no reasonable default. It gets around the dilema of having to
instanti at e unforeseeabl e cl asses. Inthe second case, t he concrete Creator
uses the factory nethod primarily for flexibility. It's following arule
that says, "Create objects in a separate operation so that subcl asses can
override the way they're created." This rule ensures that designers of
subcl asses can change t he cl ass of obj ects their parent class instanti ates

i f necessary.

2. Paraneterized factory met hods. Another variation on the pattern lets the
factory nethod create nul tipl e ki nds of products. The factory nmet hod t akes
a paraneter that identifies the kind of object to create. Al objects the
factory method creates will share the Product interface. In the Document
exanpl e, Application m ght support different kinds of Docunents. You pass

Cr eat eDocunent an extra parameter to speci fy the ki nd of docunent tocreate.

The Uni draw graphical editing franework [VL90] uses this approach for

reconstructing obj ects saved on di sk. Uni drawdefines a Creator classwth
a factory method Create that takes a class identifier as an argument. The
class identifier specifies the class to instantiate. Wen Unidraw saves
an object to disk, it wites out the class identifier first and thenits
i nstance variables. When it reconstructs the object fromdisk, it reads

the class identifier first.
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Oncetheclass identifier isread, the franework calls Create, passingthe
identifier as the parameter. Create | ooks up the constructor for the

correspondi ng class and uses it to instantiate the object. Last, Create
calls the object's Read operation, which reads the remining i nformation

on the disk and initializes the object's instance variables.

A paraneterized factory nethod has the follow ng general form where

MyProduct and Your Product are subcl asses of Product:

class Creator {
public:
virtual Product* Create(Productld);

}s

Product* Creator::Create (Productld id) {

if (id = MNE) return new MyProduct;
if (id == YOURS) return new Your Product;

/1 repeat for renmining products...

return O;

Overriding a paraneteri zed factory nethod |l ets you easily and sel ectively
extend or change the products that a Creator produces. You can introduce
new identifiers for new ki nds of products, or you can associ ate exi sting

identifiers with different products.

For exanpl e, a subcl ass MyCreat or coul d swap MyProduct and Your Product and

support a new TheirProduct subcl ass:

Product* MyCreator::Create (Productld id) {

if (id == YOURS) return new MyProduct;
if (id = MNE) return new Your Product;
/1 N B.: switched YOURS and M NE

if (id == THEIRS) return new TheirProduct;

return Creator::Create(id); // called if all others fail

Notice that the last thingthis operation doesis call Create onthe parent
class. That's because My/Creator::Create handl es only YOURS, M NE, and
THEIRS differently than the parent class. It isn't interested in other
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cl asses. Hence MyCreator extends the kinds of products created, and it

defers responsibility for creating all but a fewproducts to its parent.

3. Language-specificvariants andissues. Different | anguages | endt hensel ves

to other interesting variations and caveats.

Smel | tal k progranms often use a nethod that returns the cl ass of the object
to be instantiated. A Creator factory method can use this value to create
a product, and a ConcreteCreator may store or even conpute this value. The
result is an even later binding for the type of ConcreteProduct to be

i nstanti at ed.

A Snmal ltal k version of the Document exanple can define a docunentd ass
met hod on Appl i cati on. The docunent Cl ass met hod r et urns t he proper Docunent
class for instantiating docunents. The i npl ement ati on of docunmentC ass in
MyApplication returns the MyDocument cl ass. Thus in class Application we

have

cl i ent Met hod

docunent := self docunentd ass new.

docunent d ass

sel f subcl assResponsibility

In class MyApplication we have

docunent C ass

N MyDocunent

whi ch returns the class MyDocunment to be instantiated to Application.

An even nore flexible approach akin to paraneterized factory nethods is
to store the class to be created as a cl ass vari abl e of Application. That

way you don't have to subclass Application to vary the product.

Factory nethods in C++ are always virtual functions and are often pure
virtual. Just be careful not to call factory nmethods in the Creator's
constructor—the factory nethod i n the ConcreteCreator won't be avail abl e

yet.

You can avoid this by being careful to access products solely through
accessor operations that create the product on denand. | nst ead of creating

t he concrete product i ntheconstructor, theconstructor nerelyinitializes
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it to 0. The accessor returns the product. But first it checks to make sure
the product exists, and if it doesn't, the accessor creates it. This
techniqueissonetinescalledlazyinitialization. Thefoll ow ngcode shows

a typical inplenentation:

class Creator {
public:
Product* Get Product();
pr ot ect ed:
virtual Product* CreateProduct();
private:
Product* _product;

b

Product* Creator:: GetProduct () {
if (_product == 0) {
_product = CreateProduct();

}

return _product;

4. Usingtenplatestoavoidsubcl assing. As we' ve nenti oned, anot her potenti al
problemwi th factory methods i s that they m ght force you to subcl ass j ust
to create the appropri ate Product objects. Another way to get around this
in C+t+is to provide a tenpl ate subcl ass of Creator that's paraneterized

by the Product class:

class Creator {
public:

virtual Product* CreateProduct() = 0;

}s

tenpl ate <cl ass TheProduct >
class StandardCreator: public Creator {
public:

virtual Product* CreateProduct();

b
tenpl ate <cl ass TheProduct >

Product * Standar dCr eat or <ThePr oduct >: : Creat eProduct () {

return new TheProduct;
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Wth this tenplate, the client supplies just the product class—no

subcl assing of Creator is required.

class MyProduct : public Product {

public:

}s

MyProduct () ;
/1

St andar dCr eat or <MyPr oduct > nyCreat or;

5. Nami ng conventions. It's good practice to use nam ng conventions t hat make
it clear you're using factory nethods. For exanple, the MacApp Maci nt osh
application framework [ App89] al ways decl ares t he abstract operation that
defines the factory method as C ass* DoMakeCd ass(), where Class is the
Product cl ass.

¥Sanpl e Code

The function CreateMaze builds and returns a naze. One problemwi th this function

isthat it hard-codes t he cl asses of maze, roons, doors, andwalls. W' || introduce

factory methods to |l et subclasses choose these conponents.

First we'll define factory nethods i n MazeGane for creatingthe naze, room wall,

and door objects:

cl ass MazeGane {

public:

Maze* CreateMaze();

/] factory methods:

virtual Maze* MakeMaze() const
{ return new Maze; }
virtual Roont MakeRoon(int n) const
{ return new Roonm(n); }
virtual Wall* MakeWall () const
{ return new Vall; }
virtual Door* MakeDoor (Roont r1, Roont r2) const

{ return new Door(rl, r2); }
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Each factory nmethod returns a naze conponent of a given type. MazeGane provi des
default inplenentations that return the sinplest kinds of maze, roons, walls,

and doors.

Now we can rewite CreateMaze to use these factory nethods:

Maze* MazeGane:: CreateMaze () {
Maze* aMVaze = MakeMaze();

Roont r1 = MakeRoon(1);
Roont r2 = MakeRoom(2);
Door * t heDoor = MakeDoor(r1, r2);

aMaze- >AddRoon(r1) ;
aMaze- >AddRoon{(r 2) ;

r1->Set Side(North, MkeVall());
r1- >Set Si de( East, theDoor);

r1- >Set Si de( Sout h, MakeVall ());
r1->Set Si de(West, MakeWall());

r2->Set Si de(North, MakeWall());
r2- >Set Si de( East, MakeWall());
r2- >Set Si de( Sout h, MakeWall ());
r2- >Set Si de(West, theDoor);

return aMaze;

Di fferent games can subcl ass MazeGane to specialize parts of the naze. MazeGane
subcl asses can redefi ne sone or all of the factory nethods to specify vari ations
i nproducts. For exanpl e, a BonbedMazeGane can redefi ne t he Roomand WAl | products

to return the bonbed varieties:

cl ass BonbedMazeGane : public MazeGane {
public:
BonbedMVazeGane() ;

virtual Wall* MakeWall () const
{ return new BonbedWall; }

virtual Roont MakeRoon{(int n) const
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{ return new Room t hABonb(n); }
b

An Enchant edMazeGane vari ant mght be defined like this:

cl ass Enchant edMazeGane : public MazeGane {
public:
Enchant edMazeGane() ;

virtual Roont MakeRoon{int n) const
{ return new Enchant edRoon(n, CastSpell()); }

virtual Door* MakeDoor (Roont rl1, Roont r2) const
{ return new Door Needi ngSpel I (r1, r2); }
pr ot ect ed:

Spel I * Cast Spel | () const;
s

¥YKnown Uses

Factory met hods pervade tool kits and franmeworks. The precedi ng docunent exanpl e

isatypical useinMcApp and ET++ [ WGVB8] . The mani pul at or exanpl ei s fromuni dr aw.

Class Viewin the Smalltal k-80 Mdel/View Controller framework has a mnet hod
defaultControll er that creates acontroller, andthis m ght appear to be afactory
nmet hod [Par90]. But subcl asses of View specify the class of their default
control | er by defining defaultControllerd ass, whichreturns the class fromwhich
defaultController creates instances. So defaultControllerC ass is the real

factory nmethod, that is, the nethod that subclasses shoul d overri de.

Anore esoteric exanpleinSmalltal k-80is the factory nethod parserC ass defi ned
by Behavior (a superclass of all objects representing classes). This enables a
class to use a custom zed parser for its source code. For exanple, a client can
define a cl ass SQLParser to anal yze the source code of a class with enbedded SQ
statenments. The Behavi or class inplenments parserClass to return the standard

Smal | tal k Parser class. A class that includes enbedded SQL statenents overrides

this nethod (as a class method) and returns the SQ.Parser class.

The Orbi x ORB syst emfroml ONA Technol ogi es [ | ON94] uses Factory Met hod t o generate
an appropriate type of proxy (see Proxy (233)) when an obj ect requests a reference
to a renmote object. Factory Method nakes it easy to replace the default proxy

with one that uses client-side caching, for exanple.
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YRel ated Patterns

Abstract Factory (99) is often inplenmented with factory nmethods. The Motivation

exanple in the Abstract Factory pattern illustrates Factory Method as well.

Factory met hods are usual |y cal | ed wi t hi n Tenpl at e Met hods (360). | n the docunent

exanpl e above, NewDocurment is a tenplate nethod.
Prototypes (133) don't require subcl assing Creator. However, they often require

anlnitializeoperationonthe Product class. Creator useslInitializetoinitialize

the object. Factory Method doesn't require such an operation.
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Pr ot ot ype

¥ ntent

Speci fy the kinds of objects to create using a prototypical instance, and create

new obj ects by copying this prototype.

YMoti vati on

You could build an editor for nusic scores by custom zing a general franework
for graphical editors and addi ng new objects that represent notes, rests, and
staves. The editor framework may have a palette of tools for adding these music
objects tothe score. The pal ette woul d al so i ncl ude tool s for sel ecting, noving,
and ot herw se nmani pul ati ng nusic objects. Users will click on the quarter-note
tool and use it to add quarter notes to the score. O they can use the nove tool

to nmove a note up or down on the staff, thereby changing its pitch.

Let's assunme the framework provides an abstract Graphic class for graphical

components, |ike notes and staves. Mdreover, it'll provide an abstract Tool cl ass
for defining tools like those in the palette. The franmework al so predefines a
Graphi cTool subclass for tools that create instances of graphical objects and

add themto the docunent.

But GraphicTool presents a problemto the framework designer. The cl asses for
not es and st aves are specifictoour application, but the G aphi cTool cl ass bel ongs
to the framewor k. G aphi cTool doesn't know how to create instances of our nusic
classes to add to the score. We coul d subcl ass Graphi cTool for each ki nd of nusic
obj ect, but that would produce | ots of subclasses that differ only in the kind
of music object they instantiate. We know object conposition is a flexible

alternative to subclassing. The question is, how can the framework use it to
paraneterize i nstances of G aphicTool by the class of Gaphic they' re supposed

to create?

The sol utionliesinmaking Gaphi cTool create anewG aphic by copyi ngor "cl oni ng"
an i nstance of a Graphi c subclass. We call this instance a prototype. G aphicTool
is paraneterized by the prototype it should clone and add to the docunent. I|f
al | Graphic subcl asses support a Cl one operation, then the Graphi cTool can clone

any kind of G aphic.

So in our nusic editor, each tool for creating a nusic object is an instance of

GraphicTool that's initialized with a different prototype. Each G aphicTool
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instance wi | | produce a nusi c obj ect by cloningits prototype and addi ng t he cl one
to the score.

Tool B Graphic
Manipuwlatef) Draw{Pasition)
/K Choneaf)
| | profotype | |
RotateTool GraphicTool [=—! -
v Staff MusicalNote
1 ! ¢ late]
anipulate() Manipulatel) o Draw{Position) /K
T
! Clorey — ( _ iN
: |
1
WholaMNote HalfNote
p = prolotype-=Clone() =
while (user drags mouse) { Lyraw(Position) Draw(Fosition)
(UsE Al 15 T "
p—=Draw(new position) Clonef) '? Clone() ?
.:' 1 1
insert p into drawing ! !
return copy of self return copy of self

We can use the Prototype pattern to reduce the nunmber of classes even further.
We have separate classes for whole notes and half notes, but that's probably
unnecessary. |Instead they could be instances of the same class initialized with
di fferent bitmaps and durations. A tool for creating whol e notes becones just
a G aphi cTool whose prototype is a Musical Note initialized to be a whole note.
Thi s can reduce the nunber of classes in the systemdramatically. It al so makes

it easier to add a new kind of note to the nusic editor.

YApplicability

Use the Prototype pattern when a systemshoul d be i ndependent of howits products

are created, conposed, and represented; and

when the classes to instantiate are specified at run-time, for exanple,
by dynami c | oadi ng; or

to avoid building a class hierarchy of factories that parallels the class
hi erarchy of products; or

when i nst ances of a cl ass can have one of only a fewdifferent conbinations
of state. It may be nore convenient to install a correspondi ng nunber of
prototypes and clone themrather than instantiating the class manually,

each tine with the appropriate state.
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¥YStructure

Client prototype m Protolype
Opearation() Cionef}
I
1
I
1
=]
p = prototype-=Clone() | |
ConcretePrototypet ConcretePrototype2
Clone() ¢ Clone() &
i i
| |
1 1
' T
retum copy of self raturn copy of self

YParticipants

Prot otype (Graphic)
0 declares an interface for cloning itself.

ConcretePrototype (Staff, Wol eNote, HalfNote)
O inplenents an operation for cloning itself.

dient (G aphicTool)
O creates a new object by asking a prototype to clone itself.

¥YCol | aborati ons

A client asks a prototype to clone itself.

¥Consequences

Pr ot ot ype has nany of t he same consequences t hat Abstract Factory (99) and Bui | der
(110) have: It hides the concrete product cl asses fromtheclient, thereby reducing
t he nunber of nanes clients know about. Mreover, these patterns let a client

work with application-specific classes w thout nodification.
Addi tional benefits of the Prototype pattern are |isted bel ow
1. Adding and renovi ng products at run-tine. Prototypes | et you incorporate

a new concrete product class into a systemsinply by registering a
prototypical instancewiththeclient. That'sabit nore flexiblethan other
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creational patterns, because a client can install and renpve prototypes
at run-tine.

Speci fyi ng new obj ects by varyi ng val ues. Hi ghly dynam c systens | et you
define new behavi or through object conposition-by specifying val ues for
an object's variables, for exanpl e—and not by defining new cl asses. You
ef fectively defi ne new ki nds of objects by instantiating existing classes
and registering the instances as prototypes of client objects. A client

can exhi bit new behavi or by del egating responsibility to the prototype.

Thi s kind of design |ets users define new "classes" w thout progranmm ng.
In fact, cloning a prototype is simlar to instantiating a class. The

Prototype pattern can greatly reduce t he nunber of cl asses a syst emneeds.
In our nusic editor, one GraphicTool class can create alintless variety

of nusic objects.

Speci fyi ng new obj ects by varying structure. Many applications build

objects fromparts and subparts. Editors for circuit design, for exanple,
build circuits out of subcircuits.! For convenience, such applications
often Il et you instantiate conplex, user-defined structures, say, to use

a specific subcircuit again and again.

The Prototype pattern supports this as well. W sinply add thi s subcircuit
as a prototype to the palette of available circuit elenents. As |long as
the conmposite circuit object i npl enents Cl one as a deep copy, circuitswith

di fferent structures can be prototypes.

Reduced subcl assing. Factory Method (121) often produces a hierarchy of
Creator classes that parallels the product cl ass hierarchy. The Prototype
pattern lets you clone a prototype instead of asking a factory nmethod to
nmake a new obj ect. Hence you don't need a Creator class hierarchy at all.
This benefit applies primarily to | anguages |ike C++ that don't treat
cl asses as first-class objects. Languages that do, like Smalltalk and
bj ective C, derive |l ess benefit, since you can al ways use a cl ass obj ect
as acreator. Cl ass obj ects al ready act |i ke prototypes inthese |l anguages.
Configuring an application with classes dynamically. Sone run-tine
environnents let you |oad classes into an application dynamcally. The
Prototype pattern is the key to exploiting such facilities in a | anguage
l'i ke C++.

An applicationthat wants to create i nstances of a dynani cal |l y | oaded cl ass
won't beabletoreferenceitsconstructor statically. Instead, therun-time
envi ronnent creates aninstance of eachcl ass automaticallywhenit'sl oaded,
and it registers the instance with a prototype manager (see the

| npl enent ati on section). Thenthe applicati oncanaskthe prototype manager
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for instances of newly | oaded cl asses, classes that weren't |linked with
the programoriginally. The ET++ application franework [WGVB8] has a

run-time systemthat uses this schene.

The main liability of the Prototype pattern is that each subcl ass of Prototype
must i npl ement the Cl one operation, which may be difficult. For exanple, addi ng
Clone is difficult when the classes under consideration already exist.

I mpl enenting Clone can be difficult when their internals include objects that

don't support copying or have circul ar references.

Y| npl enent ati on

Prototype is particularly useful with static | anguages |ike C++, where cl asses
are not objects, andlittle or notype informationis available at run-tine. It's
| essinportant i nlanguages |ike Snalltalk or Cbjective Cthat provi de what amount s
to aprototype (i.e., aclass object) for creating instances of each class. This
pattern is built into prototype-based | anguages like Self [US87], in which all

obj ect creation happens by cloning a prototype.
Consi der the follow ng issues when inplenenting prototypes:

1. Using a prototype manager. When t he nunber of prototypes in a systemisn't
fixed (that is, they can be created and destroyed dynanmically), keep a
registry of available prototypes. Clients won't nmanage prototypes
thenmsel ves but will store and retrieve themfromthe registry. A client
will ask the registry for a prototype before cloning it. W call this

registry a prototype nanager.

A prototype nanager is an associative store that returns the prototype
mat chi ng a gi ven key. It has operations for registering a prototype under
a key and for unregisteringit. Clients can change or even browse t hrough
the registry at run-tinme. This lets clients extend and take i nventory on

the systemwi thout witing code.

2. Inplenentingthe C one operation. The hardest part of the Prototype pattern
is inplementing the Clone operation correctly. It's particularly tricky

when object structures contain circular references.

Most | anguages provide sone support for cloning objects. For exanple,
Smal | tal k provides an inplenentation of copy that's inherited by all
subcl asses of Obj ect. C++ provi des a copy constructor. But thesefacilities
don't solve the "shall ow copy versus deep copy" problem[GR83]. That is,
does cloning anobject inturncloneitsinstance variables, or dothe clone

and original just share the variabl es?
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A shal | ow copy is sinple and often sufficient, and that's what Smalltal k
provi des by default. The default copy constructor i n C++ does a menber -w se
copy, whi ch neans pointers will be shared bet ween t he copy and t he ori gi nal .
But cl oni ng prototypesw thconpl ex structures usual lyrequires adeep copy,
because the cl one and t he ori gi nal nmust be i ndependent. Therefore you nust
ensurethat thecl one' s conponents are cl ones of t he prototype's conponents.

Cloning forces you to decide what if anything will be shared.

If objects in the systemprovide Save and Load operations, then you can
use themto provi de a default inplenmentati on of done sinply by saving the
obj ect and |l oading it back i medi ately. The Save operati on saves t he obj ect
into a menory buffer, and Load creates a duplicate by reconstructing the

object fromthe buffer.

Initializingclones. Wile sonmeclients are perfectly happy with the cl one
as is, others will want to initialize sone or all of its internal state
to val ues of their choosing. You generally can't pass these values in the
Cl one operation, because their number will vary between classes of

prototypes. Some prototypes m ght neednultipleinitializationparaneters;
ot hers won't need any. Passi ng paraneters inthe C one operation precl udes

a uniformcloning interface.

It m ght be the case that your prototype cl asses al ready defi ne operations
for (re)settingkey pi eces of state. If so, clients may use these operations
imediately after cloning. If not, then you may have to introduce an
Initialize operation (see the Sanpl e Code section) that takes
initialization paraneters as argunments and sets theclone'sinternal state
accordi ngly. Beware of deep-copyi ng Cl one operati ons—the copi es may have
to be deleted (either explicitly or within Initialize) before you

reinitialize them

¥Sanpl e Code

Ve' ||

define a MazePrototypeFactory subclass of the MazeFactory cl ass.

MazeProt ot ypeFactory will be initialized with prototypes of the objects it wll

create so that we don't have to subclass it just to change the cl asses of walls

or roons it creates.

MazePr ot ot ypeFact ory augnents the MazeFactory interface with a constructor that

takes the prototypes as argunents:

cl ass MazePrototypeFactory : public MazeFactory {

public:
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MazePr ot ot ypeFact ory( Maze*, Wall*, Roont, Door*);

virtual Maze* MakeMaze() const;

virtual Roont MakeRoon{int) const;

virtual Wall* MakeWall () const;

virtual Door* MakeDoor (Roonf¥, Roont) const;

private:
Maze* _prototypeMaze;
Roont _pr ot ot ypeRoom
Wal | * _prototypeWall;
Door* _prot ot ypeDoor;
b

The new constructor sinply initializes its prototypes:

MazePr ot ot ypeFact ory: : MazePr ot ot ypeFactory (
Maze* m wall* w, Roonr r, Door* d

) |
_prototypeMaze = m
_prototypeval |

i
=

_prot ot ypeRoom

1
-

_prototypeDoor = d;

The nenber functions for creating walls, roons, and doors are similar: Each cl ones
a prototype and then initializes it. Here are the definitions of MakeWall and
MakeDoor :

Wal | * MazeProt ot ypeFactory:: MakeVal | () const {
return _prototypeWall->C one();

Door * MazePr ot ot ypeFact ory: : MakeDoor (Roon* r1, Room *r2) const {
Door * door = _prototypeDoor->C one();
door->Initialize(rl, r2);

return door;

We can use MazePrototypeFactory to create a prototypical or default maze just

by initializing it with prototypes of basic nmaze conponents:
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MazeGane garne;
MazePr ot ot ypeFact ory si npl eMazeFact ory(

new Maze, new Wall, new Room new Door

)i
Maze* nmaze = gane. Creat eMaze(si npl eMazeFactory);

To change the type of maze, we initialize MazePrototypeFactory with a different
set of prototypes. The following call creates a nmaze with a BonbedDoor and a
RoomA t hABorh:

MazePr ot ot ypeFact ory bonbedMazeFact or y(
new Maze, new BonbedWall,
new Room t hABonb, new Door

)

An obj ect t hat can be used as a prototype, such as an i nstance of Wall, nmust support
the Clone operation. It must also have a copy constructor for cloning. It may
al so need a separate operation for reinitializing internal state. W'll add the

Initialize operation to Door to let clients initialize the clone's roons.

Compare the follow ng definition of Door to the one on page 96:

class Door : public MapSite {
public:

Door () ;

Door (const Door &) ;

virtual void Initialize(Roon¥, Roont);

virtual Door* C one() const;

virtual void Enter();

Roont O her Si deFr om( Roont) ;
private:

Roont _roomt;

Roont _roong;

H
Door : : Door (const Door& other) {

_rooml = other._roont;

_roon2 = other._roong;
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void Door::lnitialize (Roont rl, Roonft r2) {
_rooml = r1l;
_roon? = r2;

Door* Door::C one () const {

return new Door (*this);

The BonmbedWal | subcl ass nust override Cone and i npl ement a correspondi ng copy
constructor.

cl ass BonbedWall : public wall {
public:

BonbedWal | () ;

BonbedWal | (const BonbedWal | &) ;

virtual Wall* Cone() const;
bool HasBonb();

private:
bool _bonb;

H

BonbedWal | : : BonbedWal | (const BonbedWal | & other) : Wall (other) {
_bonb = other._bonb;

Wal | * BonbedWal | :: Clone () const {
return new BonbedWal | (*this);

Al t hough BorbedWal | : : Clone returns a Wl | *, its inplenentationreturns a pointer
to a new instance of a subclass, that is, a BonbedWall*. W define Clone |ike
thisinthe base class to ensure that clients that cl one the prototype don't have
to know about their concrete subclasses. Cients should never need to downcast

the return value of Clone to the desired type.

In Smalltal k, you can reuse the standard copy nmethod inherited from Qbject to
cl one any MapSite. You can use MazeFactory to produce t he prototypes you'll need;
for exanpl e, you can create a roomby supplying the name #room The MazeFactory

has a dictionary that naps nanmes to prototypes. Its make: nmethod | ooks i ke this:
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make: part Nane

N (partCatal og at: partNanme) copy

G ven appropriate nethods for initializing the MazeFactory with prototypes, you

could create a sinple maze with the follow ng code:

Creat eMaze
on: (MazeFactory new
wi th: Door new naned: #door;
with: Wall new naned: #wall;
wi th: Room new naned: #room

yoursel f)

where the definition of the on: class nethod for CreateMaze woul d be

on: aFactory
| roonl roon |
rooml := (aFactory nmke: #roon) |ocation: 1@l.
roon?2 := (aFactory nmke: #roon) |ocation: 2@l.

door := (aFactory nake: #door) from roonl to: roonR.

roomi
at Si de: #north put: (aFactory make: #wall);
at Si de: #east put: door;
at Si de: #south put: (aFactory nmake: #wall);
at Si de: #west put: (aFactory nake: #wall).
roong
at Side: #north put: (aFactory nake: #wall);
at Si de: #east put: (aFactory nake: #wall);
at Si de: #south put: (aFactory make: #wall);
at Si de: #west put: door.
N Maze new
addRoom roont;
addRoom roon®;

your sel f

YKnown Uses

Perhaps the first exanple of the Prototype pattern was in Ivan Sutherland' s
Sket chpad system[Sut63]. The first w dely known application of the pattern in

an obj ect-oriented | anguage was i n ThingLab, where users could forma conposite
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obj ect and then pronote it toaprototypebyinstallingitinalibrary of reusable
obj ects [Bor81]. Col dberg and Robson nention prototypes as a pattern [ GR83], but
Copl i en [ Cop92] gi ves a nuch nore conpl et e descri ption. He descri bes i di ons rel at ed

to the Prototype pattern for C++ and gi ves many exanples and vari ati ons.

Etgdb is a debugger front-end based on ET++ that provides a point-and-click

interfacetodifferent |ine-orienteddebuggers. Each debugger has a corr espondi ng
Debugger Adapt or subcl ass. For exanpl e, GdbAdaptor adapts etgdb to the command
synt ax of GNU gdb, whil e SunDbxAdapt or adapts etgdb to Sun's dbx debugger. Etgdb
does not have a set of Debugger Adaptor classes hard-coded into it. Instead, it
reads the name of the adaptor to use froman environnment variable, |ooks for a
prototypew ththe specifiednaneinaglobal table, andthen cl ones t he prototype.
New debuggers can be added to etgdb by linking it with the Debugger Adapt or that

wor ks for that debugger.

The "interactiontechniquelibrary" i n Mde Conposer stores prototypes of objects
that support various interaction techniques [Sha90]. Any interaction techni que
created by the Mdde Conposer can be used as a prototype by placing it in this
library. The Prototype pattern | ets Mbde Conposer support an unlimted set of

interaction techni ques.

The music editor exanple discussed earlier is based on the Unidraw draw ng
framework [VL90].

YRel ated Patterns

Prototype and Abstract Factory (99) are conpeting patterns in some ways, as we
di scuss at the end of this chapter. They can al so be used t oget her, however. An
Abstract Factory might store a set of prototypes fromwhich to clone and return

product objects.

Desi gns that nmake heavy use of the Conposite (183) and Decorator (196) patterns

often can benefit from Prototype as well.

1Such applications reflect the Conposite (183) and Decorator (196) patterns.
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Si ngl et on

¥ ntent

Ensure a class only has one instance, and provide a global point of access to
it.

YMoti vati on

It's important for sonme cl asses to have exactly one instance. Although there can
be many printers in a system there should be only one printer spooler. There
shoul d be only one file systemand one wi ndow nanager. Adigital filter will have

one A/ Dconverter. An accounting systemwi || be dedi cated to servi ng one conpany.

How do we ensure t hat a cl ass has only one i nstance and that the instanceis easily
accessi bl e? A global variable nakes an object accessible, but it doesn't keep

you frominstantiating nultiple objects.

A better solution is to make the class itself responsible for keeping track of
its sole instance. The class can ensure that no other instance can be created
(by intercepting requests to create new objects), and it can provide a way to

access the instance. This is the Singleton pattern.

YApplicability

Use the Singleton pattern when

there nust be exactly one instance of a class, and it nust be accessible
to clients froma well-known access point.

when the sol e instance shoul d be extensi bl e by subclassing, and clients
shoul d be able to use an extended i nstance wi thout nodifying their code.
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¥YStructure

Singleton

static Instance) O---q--------—- retum unigualnsiance
SingletonOperation()
GetSingletonDatal()

static uniquelnstance
singletonCiata

YPartici pants

Si ngl et on
0 defines an Instance operation that lets clients access its unique
instance. Instance is a class operation (that is, a class nethod
in Smalltalk and a static nenber function in C++).

O may be responsible for creating its own unique instance.
¥Col | abor ati ons

Clients access a Singleton instance solely through Singleton's Instance
operati on.

YConsequences

The Singleton pattern has several benefits:

1. Controlled access to sole instance. Because the Singleton class
encapsul ates its sole instance, it can have strict control over how and
when clients access it.

2. Reduced nane space. The Singleton pattern is an inprovenent over gl obal
variables. It avoids polluting the name space with gl obal variabl es t hat
store sol e instances.

3. Pernmits refinenment of operations and representati on. The Singl eton cl ass
may be subcl assed, andit's easytoconfigureanapplicationw thaninstance
of this extended cl ass. You can configure the applicationwth an instance
of the class you need at run-tinme.

4. Permts avariabl e nunmber of i nstances. The pattern nakes it easy to change
your mi nd and al | ownor e t han one i nst ance of t he Si ngl eton cl ass. Mreover,

you can use the same approach to control the nunber of instances that the
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application uses. Only the operation that grants access to the Singleton
i nstance needs to change.

5. More flexible than cl ass operations. Another way to package a singleton's
functionality istouse class operations (that is, static menber functions
inC++tor class nethods in Snal |l tal k). But both of these | anguage t echni ques
make it hard to change a design to all ownore than one i nstance of a cl ass.
Mor eover, static menber functions in C++ are never virtual, so subcl asses

can't override them pol ynorphically.

Y| npl enent ati on

Here are inplenentation issues to consider when using the Singleton pattern:

1. Ensuring a unique instance. The Singl eton pattern makes the sol e i nstance
a normal instance of a class, but that class is witten so that only one
i nstance can ever be created. Acommpnway todothisistohidetheoperation
that creates theinstance behind aclass operation(that is, either astatic
nmenber function or a class nmethod) that guarantees only one instance is
created. This operation has access to the variable that hol ds the uni que
instance, and it ensures the variable is initialized with the unique
i nstance beforereturningits value. This approach ensures that a singleton

is created and initialized before its first use.

You can define the class operation in C++ with a static nenber function
I nstance of the Singleton class. Singleton also defines a static nmenber

variable _instance that contains a pointer to its unique instance.

The Singleton class is declared as

class Singleton {
public:
static Singleton* Instance();
pr ot ect ed:
Si ngl eton();
private:
static Singleton* _instance;

b

The correspondi ng i npl enentation is

Si ngl eton* Singleton::_instance = 0;
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Si ngl eton* Singleton::Instance () {
if (_instance == 0) {
_instance = new Singl eton;

}

return _instance;

Clients access the singleton exclusively through the |Instance nenber
function. The variable _instanceisinitializedtoO, andthe static nenber
function Instance returns its value, initializing it with the unique
instanceif it isO0. Instanceuseslazyinitialization; thevalueit returns

isn't created and stored until it's first accessed.

Noti cethat the constructor is protected. Aclient that triestoinstantiate
Singleton directly will get an error at conpile-time. This ensures that

only one instance can ever get created.

Moreover, since the _instance is a pointer to a Singleton object, the
I nstance menber function can assign a pointer to a subcl ass of Singleton

to this variable. We'll give an exanple of this in the Sanple Code.

There's anot her thing to note about the C++inplenentation. It isn't enough
to define the singleton as a global or static object and then rely on

automatic initialization. There are three reasons for this:

1. We can't guarantee that only one instance of a static object wll
ever be decl ared.

2. W m ght not have enough informationtoinstanti ate every singleton
at staticinitializationtime. Asingletonm ght require val ues that
are conputed later in the program s execution.

3. Ct+doesn't definetheorder i nwhichconstructors for gl obal objects
are called across translation units [ES90]. This means that no
dependenci es can exi st between singletons; if any do, then errors

are inevitable.

An added (albeit small) liability of the global/static object approachis
that it forces all singletons to be created whether they are used or not.

Using a static nenber function avoids all of these problens.

InSmalltal k, the functionthat returns the uni queinstanceis inplenented
as a cl ass net hod on the Singl eton class. To ensure that only one i nstance
iscreated, overridethe newoperation. Theresulting Si ngl et on cl ass mi ght
have t he f ol | owi ng t wo cl ass net hods, where Sol el nstanceis aclassvariable

that is not used anywhere el se:
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new

self error: 'cannot create new object’

def aul t

Sol el nstance isNil ifTrue: [Sol elnstance := super new.

N Sol el nst ance

Subcl assing the Singleton class. The main issue is not so nuch defining
the subclass but installing its unique instance so that clients will be
able to use it. In essence, the variable that refers to the singleton

i nstance nmust get initializedw thaninstance of t he subcl ass. The si npl est
techniqueistodeterm ne whichsingletonyouwant touseinthe Singleton's
I nstance operation. An exanple in the Sanpl e Code shows how to inpl enment

this technique with environnent variabl es.

Anot her way t o choose t he subcl ass of Singletonistotaketheinplenmentation
of Instance out of the parent class (e.g., MazeFactory) and put it inthe
subcl ass. That lets a C++ programer decide the class of singleton at
link-time (e.g., by linking in an object file containing a different

i mpl enent ati on) but keeps it hidden fromthe clients of the singleton.

The |i nk approach fixes the choice of singleton class at |ink-tinme, which
makes it hard to choose the singleton class at run-tine. Using conditional
statenents to determne the subclass is nore flexible, but it hard-wires
the set of possibl e Singletonclasses. Neither approachis flexible enough

in all cases.

A nore flexible approach uses a registry of singletons. Instead of having
I nst ance defi ne t he set of possi bl e Si ngl etoncl asses, the Si ngl etoncl asses

can regi ster their singleton instance by nanme in a well-known registry.

The regi stry maps bet ween string nanes and si ngl et ons. Wen | nst ance needs
a singleton, it consults the registry, asking for the singleton by nane.
The regi stry | ooks upthe correspondi ngsingleton(if it exists) andreturns
it. Thi s approachfrees | nstancefromknow ngall possibl e Singletonclasses
or instances. All it requiresisacomoninterfacefor all Singletonclasses

that includes operations for the registry:

class Singleton {

public:

static void Register(const char* nane, Singleton*);

static Singleton* Instance();

pr ot ect ed:
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static Singleton* Lookup(const char* nane);
private:
static Singleton* _instance;

static List<NaneSingl etonPair>* _registry;

Regi ster registers the Singleton instance under the given nane. To keep
theregistrysinple, we'll haveit storealist of NameSi ngl et onPai r obj ects.
Each NameSi ngl etonPair maps a nanme to a singleton. The Lookup operation
finds asingletongivenits name. We' || assune that an envi ronnent vari abl e

speci fies the name of the singleton desired.

Si ngl eton* Singleton::Instance () {
if (_instance == 0) {
const char* singletonName = getenv("SI NGLETON');

/1 user or environment supplies this at startup

_instance = Lookup(singl et onNane) ;
/1 Lookup returns O if there's no such singleton

}

return _instance;

Wer e do Si ngl eton cl asses regi ster thensel ves? One possibilityisintheir

constructor. For exanple, a MySingl eton subcl ass coul d do the foll ow ng:

M/Si ngl eton: : MySi ngl eton() {
/1
Si ngl eton: : Regi ster ("MSi ngl eton", this);

O course, the constructor won't get called unl ess sonmeone instanti ates
t he cl ass, whi ch echoes t he probl emt he Si ngl etonpatternistryingtosolve!
We can get around this problemin C++ by defining a static instance of

M/Si ngl eton. For exanple, we can define

static MySingl eton theSingleton;
in the file that contains M/Singleton's inplenentation.

No | onger is the Singleton class responsible for creating the singleton.

Instead, its primary responsibility is to nake the singleton object of
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choi ce accessible in the system The static object approach still has a
potential drawback—nanely that instances of all possible Singleton

subcl asses nust be created, or else they won't get registered.

¥Sanpl e Code

Suppose we define a MazeFactory class for building nazes as descri bed on page
92. MazeFactory defines an interface for building different parts of a naze.
Subcl asses can redefine the operations toreturninstances of specialized product

cl asses, |ike BonbedWall objects instead of plain Wall objects.

VWhat's rel evant here is that the Maze applicati on needs only one instance of a
maze factory, and that instance shoul d be avail able to code t hat buil ds any part
of the maze. Thisis wherethe Singletonpatternconmesin. By maki ngthe MazeFactory
a singleton, we nake the naze object globally accessible w thout resorting to

gl obal vari abl es.

For sinplicity, let's assune we'll never subcl ass MazeFactory. (W'll consider
the alternative in a nonent.) We nake it a Singleton class in C++ by adding a
static I nstance operation and a static _i nstance nmenber to hold the one and only
i nstance. We nust al so protect the constructor to prevent acci dental instantiation,

which nmight Iead to nore than one instance.

cl ass MazeFactory {
public:

static MazeFactory* |nstance();

/] existing interface goes here
prot ect ed:

MazeFactory();
private:

static MazeFactory* _instance;

b

The correspondi ng i npl enentation is

MazeFact ory* MazeFactory::_instance = 0;

MazeFact ory* MazeFactory::lnstance () {
if (_instance == 0) {

_instance = new MazeFactory;
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return _instance;

Now | et's consi der what happens when there are subcl asses of MazeFactory, and
the applicati on nust deci de whi ch oneto use. W'l sel ect t he ki nd of naze t hrough
an environnent variable and add code that instantiates the proper MazeFactory
subcl ass based on the environnment variable's value. The Instance operation is

a good place to put this code, because it already instantiates MazeFactory:

MazeFact ory* MazeFactory::lnstance () {
if (_instance == 0) {

const char* nmazeStyle = getenv("MAZESTYLE");

if (strcnp(nazeStyle, "bonbed") == 0) {

_instance = new BonbedMazeFactory;

} else if (strcnp(mazeStyle, "enchanted") == 0) {

_instance = new Enchant edMazeFact ory;

/1 ... other possible subclasses

} else { /1 default

_instance = new MazeFactory;

}

return _instance;

Not e that Instance nust be nodified whenever you define a new subcl ass of
MazeFactory. That might not be a problemin this application, but it might be

for abstract factories defined in a franework.

A possible solution would be to use the registry approach described in the
I mpl enent ati on section. Dynamic |inking could be useful here as well -t would

keep the application fromhaving to | oad all the subclasses that are not used.

¥YKnown Uses

An exanpl e of the Singleton patternin Snalltal k-80 [Par90] is the set of changes
to the code, whichis ChangeSet current. Anore subtle exanpleistherelationship
bet ween cl asses and their netacl asses. A netaclass is the class of a class, and

each net acl ass has one i nstance. Met acl asses do not have nanes (except i ndirectly
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through their sol e instance), but they keep track of their sole instance and wi ||

not nornally create another.

The I nterViews user interfacetool kit [LCl +92] uses the Si ngl etonpatterntoaccess
the uni que i nstance of its Session and WdgetKit classes, anpng others. Session
defines the application's main event dispatch | oop, stores the user's database
of stylisticpreferences, and nanages connecti onsto one or nore physi cal displ ays.
WdgetKit is an Abstract Factory (99) for defining the | ook and feel of user

interface wi dgets. The WdgetKit::instance() operationdeterm nesthe particul ar
W dgetKit subclass that's instantiated based on an environment variable that

Session defines. A simlar operation on Session detern nes whet her nonochrone
or color displays are supported and configures the singleton Session instance

accordi ngly.

YRel ated Patterns

Many pat t er ns can be i npl enent ed usi ng t he Si ngl et on pattern. See Abstract Factory
(99), Builder (110), and Prototype (133).
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Di scussi on of Creational Patterns

There are two conmon ways to paraneterize a systemby the classes ofobjects it
creates. Oneway i stosubclassthe classthat createstheobjects; this corresponds
to using the Factory Method (121) pattern. The main drawback of thisapproach is
that it canrequire creating a newsubcl ass just to changet he cl ass of t he product.
Such changes can cascade. For exanpl e, when t he product creator is itself created

by a factory nethod, thenyou have to override its creator as well.

The other way to paraneterize a systemrelies nore on objectconposition: Define
an object that's responsible for knowi ng the classof the product objects, and
make it a paraneter of the system Thisis a key aspect of the Abstract Factory
(99), Bui l der (110), and Prototype (133) patterns. Al three involve creating a
new "factory object" whoseresponsibility is to create product objects. Abstract
Factory has thefactory object producing objects of several classes. Buil der has
t hef act ory obj ect bui |l di ng a conpl ex product i ncrenental | y usi ng acorrespondi ngly
conpl ex protocol. Prototype has the factory objectbuil ding a product by copyi ng
a prototype object. In this case, thefactory object and the prototype are the

sane object, because theprototype is responsible for returning the product.

Consi der the drawi ng editor framework described in the Prototypepattern. There

are several ways to paraneterize a G aphicTool by theclass of product:

By applying the Factory Method pattern, a subclass of GraphicTool will
becr eat ed f or each subcl ass of Graphicinthe palette. G aphicTool wll have

a NewGraphic operation that each G aphi cTool subclass willredefine.

By appl yi ng t he Abstract Factory pattern, therew || be a cl ass hi erar chyof
G aphi csFactori es, one for each G aphi c subcl ass. Each factorycreates just
one product in this case: CrcleFactory will createCrcles, LineFactory
will create Lines, and so on. A G aphicTool willbe paranmeterized with a
factory for creating the appropriate kind of Graphics.

By appl yi ng t he Prot ot ype pattern, each subcl ass of Graphics willinplenment
t he d one operati on, and a G aphi cTool wi || be paraneteri zedwi th aprototype

of the Graphic it creates.

Whi ch pattern is best depends on nmany factors. In our draw ng editorframework,
the Factory Method pattern is easiest to use at first.It's easy to define a new
subcl ass of GraphicTool, and the instancesof GraphicTool are created only when
the palette is defined. The nai ndi sadvant age here i s that G aphi cTool subcl asses

proliferate, and noneof them does very nuch.

Abstract Factory doesn't offer nmuch of an inprovenent, because itrequires an
equal ly | arge GraphicsFactory class hierarchy. AbstractFactory woul d be

preferable to Factory Method only if there wereal ready a G aphi csFactory cl ass
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hi erarchy—ei t her because theconpil er provides it automatically (as in Snalltalk

or Objective C) orbecause it's needed in another part of the system

Overall, the Prototypepatternis probablythebest for thedraw ngeditor franework,
because it only requires inplenenting a C oneoperation on each G aphics cl ass.
That reduces the nunber of classes, and C one can be used for purposes other than

pure instantiation (e.g.,a Duplicate nenu operation).

Fact ory Met hod makes a desi gn nore custoni zable andonly alittle nmoreconplicated.
O her design patterns require new cl asses, whereasFactory Method only requires
a new operation. People often useFactory Method as the standard way to create
objects, but it isn'tnecessary when the class that's instanti ated never changes
or wheninstantiation takes place in an operation that subcl asses can

easi |l yoverride, such as an initialization operation.

Desi gns that use Abstract Factory, Prototype, or Builder are even noreflexible
than t hose that use Factory Met hod, but they're al so noreconpl ex. Often, designs
start out using Factory Method and evol vetoward the other creational patterns
as the designer discovers wherenore flexibility is needed. Knowi ng many desi gn
patterns gives younore choices when trading off one design criterion against

anot her .
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4. Structural Patterns

Structural patterns are concerned with how cl asses and objects areconposed to
formlarger structures. Structural class patterns use inheritance to conpose
interfacesor inplementations. As a sinple exanple, consider how

mul ti pl ei nheritance ni xes two or nore cl asses into one. Theresult is a classthat
combi nes the properties of its parent cl asses. This patternisparticularly useful
for maki ng i ndependent |y devel oped cl ass | i brari eswork toget her. Anot her exanpl e
is the class formof the Adapter (157) pattern. In general, an adapter makes
oneinterface (the adaptee's) conformto another, thereby providing auniform
abstraction of different interfaces. A class adapteracconplishes this by
inheriting privately from an adaptee class. Theadapter then expresses its

interface in ternms of the adaptee's.

Rat her than conposing i nterfaces or inpl enentations, structural object patterns
describe ways to conpose objects to realize newfunctionality. The added
flexibility of object conpositioncomes fronthe ability to changethe conposition

at run-time, which is inpossiblewith static class conposition.

Conposite (183) is an exanple of a structural objectpattern. It describes how
to build a class hierarchy made up of cl asses for two ki nds of objects: prinmtive
and conposite. Theconposite objects |et you conpose prinmitive and ot her

compositeobjectsintoarbitrarily conplex structures. I nthe Proxy (233) pattern,
a proxy acts as a conveni entsurrogate or pl acehol der for another object. A proxy
can be used i nmany ways. It can act as a local representative for an object in
arenote address space. It can represent a | arge object that shoul d bel oaded on
demand. It might protect access to a sensitive object.Proxies provide a |evel
of indirectiontospecificpropertiesofobjects. Hencethey canrestrict, enhance,

or alter these properties.

The Fl ywei ght (218) pattern defines a structure forsharing objects. Objects are
shared for at |east two reasons:efficiency and consistency. Flyweight focuses
on sharing for spaceefficiency. Applications that use | ots of objects nust pay
carefulattention to the cost of each object. Substantial savings can be hadby
sharing objects instead of replicating them But objects can beshared only if
they don't define context-dependent state. Fl ywei ghtobjects have no such state.
Any addi tional information they need toperformtheir task i s passed to themwhen

needed. Wth nocontext-dependent state, Flyweight objects nay be shared freely.

Wher eas Fl ywei ght shows howto nake lots of little objects, Facade (208) shows
how to make a single object representan entire subsystem A facade is a
representative for a set ofobjects. The facade carries out its responsibilities

by forwardi ngmessages to the objects it represents. The Bridge (171) pattern
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separates an object's abstraction fromits inplenentation sothat you can vary

t hem i ndependent|y.

Decorator (196) describes how to add responsibilitiesto objects dynam cally.
Decorator is a structural pattern thatconposes objects recursively to allow an
open- ended nunber ofadditional responsibilities. For exanple, a Decorator

obj ectcontai ning a user interface conponent can add a decoration |ike aborder
or shadowto t he conmponent, or it can add functionality likescrollingand zooning.
We can add two decorations sinply by nestingone Decorator object within another,
and so on for additional decorations. To acconplish this, each Decorator object
must confornto the interface of its conponent and nust forward nessages toit.The
Decorator can do its job (such as drawi ng a border around theconponent) either

before or after forwarding a nessage.

Many structural patterns are related to sone degree. W'I| discussthese

rel ati onships at the end of the chapter.
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Adapt er

¥ ntent

Convert the interface of a class into another interface clients expect. Adapter
| ets classes work together that couldn't otherw se because of inconpatible

i nterfaces.

YAl so Known As

W apper

YMoti vati on

Sonetimes a tool kit class that's designed for reuse isn't reusabl e only because

itsinterfacedoesn't matchthe domai n-specificinterfaceanapplicationrequires.

Consi der for exanple a drawing editor that | ets users draw and arrange graphi cal
el ements (lines, polygons, text, etc.) into pictures and di agrans. The draw ng
editor's key abstraction is the graphical object, which has an editabl e shape
and can drawitsel f. Theinterface for graphical objects is defined by an abstract
cl ass cal | ed Shape. The edi t or defi nes asubcl ass of Shape f or each ki nd of graphi cal
object: a LineShape class for |ines, a PolygonShape class for polygons, and so
forth.

Cl asses for el ement ary geonetri c shapes | i ke Li neShape and Pol ygonShape ar e r at her
easy to i npl enent, because their drawi ng and editing capabilities are inherently
Iimted. But a Text Shape subcl ass that can di splay and edit text i s considerably
nore difficult to inplenent, since even basic text editing involves conplicated
screen updat e and buffer managenment. Meanwhil e, an of f-the-shelf user interface
tool kit m ght al ready provide a sophisticated TextViewclass for displaying and
editing text. ldeally we'd like to reuse TextView to inplenment TextShape, but
the tool kit wasn't desi gned with Shape classes in mnd. So we can't use Text Vi ew

and Shape objects interchangeably.

How can exi sting and unrel ated cl asses | i ke TextViewwork in an application that
expects classes with a different and i nconpatible interface? W coul d change t he
TextViewclass sothat it confornms tothe Shapeinterface, but that isn't anoption
unl ess we have the tool kit's source code. Even if we did, it wouldn't nake sense
to change Text Vi ew, t he tool kit shoul dn't have t o adopt domai n-specificinterfaces

just to nmeke one application work.
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I nstead, we could define Text Shape so that it adapts the TextViewinterface to
Shape's. We can do this in one of two ways: (1) by inheriting Shape's interface
and TextView s inplementation or (2) by conposing a TextView instance within a
Text Shape and i npl ement i ng Text Shape i n terns of TextView s interface. These two
approaches correspond to the class and object versions of the Adapter pattern.

We cal | Text Shape an adapter.

DrawingEditor I-CI Shape — TextView
BoundingBox{) GietExient()
CreateManiputaton)

A

text
Lina TextShape
BoundingBox) BoundingBox() O-f—-=-==== return text-=GatExtent()
CreateManipulator]) CreateManipulator(y o—f-----

=== retum new TextManipulator

Thi s di agrami | l ustrat est he obj ect adapt er case. It shows howBoundi ngBox r equest s,
decl ared i n cl ass Shape, are converted to Get Extent requests defined in TextView.
Si nce Text Shape adapts TextViewto the Shape interface, the drawi ng editor can

reuse the ot herw se inconpatible TextView cl ass.

Oten the adapter is responsible for functionality the adapted cl ass doesn't
provi de. The di agramshows how an adapter can ful fill such responsibilities. The
user should be able to "drag" every Shape object to a newlocation interactively,
but TextView isn't designed to do that. TextShape can add this m ssing
functionality by inplenmenting Shape's Creat eMani pul at or operation, whichreturns

an instance of the appropriate Manipul ator subcl ass.

Mani pul ator is an abstract class for objects that know how to ani mate a Shape
in response to user input, |like dragging the shape to a new |l ocation. There are
subcl asses of Manipulator for different shapes; Text Manipul ator, for exanple,
is the correspondi ng subcl ass for Text Shape. By returning a Text Mani pul at or

i nstance, Text Shape adds the functionalitythat TextVi ewl acks but Shape requires.

YApplicability

Use the Adapter pattern when

you want to use an existing class, and its interface does not match the
one you need.
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you want to create a reusable class that cooperates with unrel ated or
unf oreseen cl asses, that i s, cl asses that don't necessarily have conpatible
interfaces.

(obj ect adapter only) you need to use several existing subclasses, but it's
impractical to adapt their interface by subcl assi ng every one. An object

adapter can adapt the interface of its parent class.

YStructure

A cl ass adapter uses nultiple inheritance to adapt one interface to another:

Client ——® Target Adaptee

Hequesi(} SpecificRequest()

A A

| | (implemeantation)

Adapter

Request) T—F------—-1 SpecificRequest()

An obj ect adapter relies on object conposition:

Client = Target —i Adaptee
Reguesty) SpecificHequest()
adaplee
Adapter
Request) o-F----—-—------ adaptee-=5SpecificRequesi()

YParticipants

Target ( Shape)

0 defines the dommin-specific interface that Cient uses.
Cient (Draw ngEditor)

0 collaborates with objects confornming to the Target interface.
Adapt ee (Text Vi ew)

0 defines an existing interface that needs adapting.
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Adapt er (Text Shape)
O adapts the interface of Adaptee to the Target interface.

¥Col | aborati ons

Clients call operations on an Adapter instance. Inturn, the adapter calls
Adapt ee operations that carry out the request.

¥Consequences

Cl ass and obj ect adapters have different trade-offs. A class adapter

adapts Adaptee to Target by commtting to a concrete Adapter class. As a
consequence, a cl ass adapter won't work when we want to adapt a cl ass and
all its subcl asses.

| ets Adapter override some of Adaptee's behavior, since Adapter is a
subcl ass of Adapt ee.

i ntroduces onl y one obj ect, and no addi ti onal pointer indirectionis needed
to get to the adaptee.

An obj ect adapter

| ets a single Adapter work with many Adaptees—that is, the Adaptee itself
and al | of its subclasses (if any). The Adapter can al so add functionality
to all Adaptees at once.

makes it harder to override Adaptee behavior. It will require subcl assing
Adapt ee and maki ng Adapter refer to the subcl ass rather than the Adaptee

itself.

Here are other issues to consider when using the Adapter pattern:

1.

How much adapti ng does Adapt er do? Adapters vary in the anount of work t hey
do to adapt Adapteetothe Target interface. Thereis a spectrumof possible
work, fromsinple interface conversion—for exanple, changi ng the nanmes of
operations—to supporting an entirely different set of operations. The
anount of work Adapter does depends on how sinmilar the Target interface
is to Adaptee's.

Pl uggabl e adapters. A class is nore reusable when you mnimze the
assunptions other classes nmust make to use it. By building interface
adaptation into a class, you elininate the assunption that other cl asses
see the same interface. Put another way, interface adaptation lets us

i ncorporate our class into existing systenms that nmight expect different
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interfaces to the class. ObjectWrks\Snmalltal k [Par90] uses the term

pl uggabl e adapter to describe classes with built-ininterface adaptation.

Consi der a TreeDi spl ay wi dget t hat can di spl ay tree structures graphically.
If this were a special -purpose wi dget for useinjust one application, then
we m ght require the objects that it displays to have aspecificinterface;
that is, all nust descend froma Tree abstract class. But if we wanted to
make TreeDi spl ay nore reusabl e (say we wanted to nake it part of atoolkit
of useful wi dgets), then that requirement woul d be unreasonabl e.
Applications will define their own classes for tree structures. They
shoul dn't be forced to use our Tree abstract class. Different tree

structures will have different interfaces.

In a directory hierarchy, for exanple, children m ght be accessed with a
Cet Subdirectori es operation, whereas in an inheritance hierarchy, the
correspondi ng operation mght be called GetSubclasses. A reusable
TreeDi spl ay wi dget must be abl e to di spl ay bot h ki nds of hierarchies even
if they use different interfaces. In other words, the TreeDi splay should

have interface adaptation built intoit.

We'll look at different ways to build interface adaptation into cl asses

in the Inplenmentation section.

Usi ng two-way adapters to provide transparency. A potential problemw th
adapters is that they aren't transparent to all clients. An adapt ed obj ect
no | onger conforns to the Adaptee interface, so it can't be used as is
wher ever an Adaptee object can. Two-way adapters can provi de such

transparency. Specifically, they' re useful whentwo different clients need

to view an object differently.

Consi der the two-way adapter that integrates Unidraw, a graphical editor
framewor k [ VL90], and QOCA, a constraint-solving toolkit [HHW92]. Both
systens have cl asses that represent variables explicitly: Unidraw has
St at eVari abl e, and QOCA has Constraint Vari abl e. To nmake Uni drawwork wi th
QOCA, ConstraintVariable nust be adapted to StateVariable; to |l et QOCA
propagate solutions to Unidraw, StateVariable nust be adapted to

Const rai nt Vari abl e.
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(1o QOCA class hierarchy) (to Unidraw class hierarchy)
I I

ConstraintVariable StateVariable

ConstraintStateVariable

The sol ution invol ves a two-way cl ass adapter ConstraintStateVariable, a
subcl ass of both StateVari abl e and Constrai ntVariabl e, that adapts the two
interfacestoeachother. Miultipleinheritanceisaviablesolutioninthis
case because the interfaces of the adapted cl asses are substantially

di fferent. The t wo-way cl ass adapt er conforns t o bot h of t he adapt ed cl asses

and can work in either system

Y| npl enent ati on

Al 't hough the i npl ementati on of Adapter is usually straightforward, here are sone

i ssues to keep in mnd:

1. Inplenmenting class adapters in C++. In a C++ inplenmentation of a class
adapter, Adapter would inherit publicly from Target and privately from
Adapt ee. Thus Adapter would be a subtype of Target but not of Adaptee.

2. Pluggabl e adapters. Let' s | ook at threeways toinpl enent pluggabl e adapters
for the TreeDi spl ay wi dget descri bed earlier, which can | ay out and di spl ay

a hierarchical structure automatically.

Thefirst step, whichiscomontoall threeof theinplenmentations discussed
here, is to find a "narrow' interface for Adaptee, that is, the snallest
subset of operations that lets us do the adaptation. A narrow interface
consi sting of only a couple of operations is easier to adapt than an
interface with dozens of operations. For TreeDisplay, the adaptee is any
hi erarchical structure. A mninalist interface mght include two
operations, one that defines how to present a node in the hierarchical

structure graphically, and another that retrieves the node's children.
The narrow interface | eads to three inplenentation approaches:

a. Usingabstract operati ons. Definecorrespondi ng abstract operati ons
for the narrow Adaptee interface in the TreeDi splay class.
Subcl asses must i npl ement the abstract operations and adapt the

hi erarchical ly structured object. For exanple, a
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DirectoryTreeDi splay subclass will inplenment these operations by

accessing the directory structure.

TreeDisplay {Client, Target)

Gethiidren(Noda)

Build Tree(child)

CreateGraphicNode(Node) GetChildren{n) =
Display() for each child |
BulldTree{Mode n) @-—--—-———-F-—-----—1 AddGraphicNode|{CreateGraphichode(child))

2

DirectoryTreeDisplay (Adapter)

GetChildran{Modea)

CreateGraphichMode!Node) 4>-| FileSystemEntity (Adaptes)

DirectoryTreeDi splay specializes the narrowinterface so that it
can display directory structures nade up of FileSystenEntity

obj ects.

Using del egate objects. In this approach, TreeD splay forwards
requests for accessing the hierarchical structure to a delegate
object. TreeDisplay can use a different adaptation strategy by

substituting a different del egate.

For exanpl e, suppose there exists a DirectoryBrowser that uses a
TreeDi splay. DirectoryBrowser mi ght make a good del egate for

adapting TreeDisplay to the hierarchical directory structure. In
dynam cal ly typed | anguages like Snalltalk or Objective C, this
approach only requires an interface for registering the del egate
with the adapter. Then TreeDi splay sinply forwards the requests to
t he del egat e. NEXTSTEP [ Add94] uses thi s approach heavily to reduce

subcl assi ng.

Statically typed | anguages |like C++ require an explicit interface
definition for the del egate. We can specify such an interface by
putting the narrow interface that TreeDi splay requires into an
abstract TreeAccessorDel egate class. Thenwe canm x this interface
i ntothe del egat e of our choi ce—Di rectoryBrowser inthis case—using
i nheritance. W use single inheritance if the DirectoryBrowser has
no existing parent class, multiple inheritance if it does. M xing
cl asses together like this is easier than introducing a new

Tr eeDi spl ay subcl ass and i npl ementing its operations individually.
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TreeAccessorDelegate (Target)

- - delegate GetChildren| Treelisplay, Node)
TreeDisplay (Cliant) ™ CreateGraphicNode| TreeDispiay, Node)
SetDelegate Delegate)

Chisplay()
DirectoryBrowser {Adapter)

GetChildren| TreeDisplay, Node)
CreateliraphicModel TreeDisplay, Node)
CreateFile])

] DeletaFile()

BuilldTreg{Mode n)  §
1
I
1
T
1
I
1
I

delegate—=GetChildrenithis, n)

for each child |
AddGraphichode( i
delegate-=CreateGraphicModedthis, child)

]
BulidTree(child)

b —|u| FileSystemEntity {Adaptas)

c. Paraneterized adapters. The usual way t o support pluggabl e adapters
inSmalltalk is to paranmeterize an adapter with one or nore bl ocks.
The bl ock construct supports adapt ati onw t hout subcl assi ng. Abl ock
can adapt a request, and the adapter can store a block for each
i ndi vidual request. In our exanple, this nmeans TreeD splay stores
one bl ock for converting a node i nto a Graphi cNode and anot her bl ock

for accessing a node's children.

For exanpl e, tocreate TreeDi splayonadirectory hierarchy, wewite

directoryDisplay : =
(TreeDi splay on: treeRoot)
get Chi | dr enBl ock:
[:node | node getSubdirectories]
creat eG aphi cNodeBl ock:

[:node | node createG aphi cNode].

If you're buildinginterface adaptationinto aclass, this approach

of fers a convenient alternative to subcl assing.

¥Sanpl e Code

We'l | give a brief sketch of the inplenmentation of class and obj ect adapters for

the Motivation exanple beginning with the classes Shape and Text Vi ew.
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cl ass Shape {
public:
Shape() ;
virtual void Boundi ngBox(
Poi nt & bottonlLeft, Point& topRight
) const;

virtual Manipul ator* CreateManipul ator() const;

}s

cl ass Text View {
public:
Text View();
void GetOrigin(Coord& x, Coord& y) const;
voi d Get Extent (Coord& wi dth, Coord& height) const;

virtual bool |sEnpty() const;
H

Shape assunes a boundi ng box defined by i ts opposing corners. Incontrast, TextVi ew
i s defined by an origin, height, and wi dt h. Shape al so defi nes a Cr eat eMani pul at or
operation for creating a Mani pul ator obj ect, which knows howto ani mate a shape
when the user manipulates it.! TextView has no equival ent operation. The class

Text Shape is an adapter between these different interfaces.

A cl ass adapter uses multiple inheritance to adapt interfaces. The key to cl ass
adapters is to use one inheritance branch to inherit the interface and anot her
branch to inherit the i nplenentation. The usual way to nake this distinctionin
C++istoinherit theinterface publicly andinherit theinplenmentationprivately.

We'll use this convention to define the Text Shape adapter.

cl ass Text Shape : public Shape, private TextView {
public:
Text Shape();

virtual void Boundi ngBox(

Poi nt & bottonlLeft, Point& topRi ght
) const;
virtual bool |sEnpty() const;

virtual Manipul ator* CreateManipulator() const;

b

The Boundi ngBox operation converts TextView s interface to conformto Shape's.
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voi d Text Shape: : Boundi ngBox (
Poi nt & bottonLeft, Point& topRi ght
) const {

Coord bottom left, width, height;

GetOrigin(bottom left);
Get Extent (wi dt h, height);

bottonLeft = Point(bottom left);
topRi ght = Poi nt(bottom + height, left + w dth);

The | sEnpty operation denonstrates the direct forwarding of requests conmon in

adapt er inpl enentations:

bool Text Shape::|sEnpty () const {
return TextView :|sEnpty();

Finally, we define CreateManipulator (which isn't supported by TextView) from
scratch. Assunme we' ve al ready i npl enent ed a Text Mani pul ator cl ass that supports

mani pul ati on of a Text Shape.

Mani pul at or* Text Shape: : Creat eMani pul ator () const {

return new Text Mani pul ator(this);

The obj ect adapter uses object conposition to conbine classes with different
interfaces. In this approach, the adapter TextShape maintains a pointer to

Text Vi ew.

cl ass Text Shape : public Shape {
public:
Text Shape( Text Vi ew*);

virtual void Boundi ngBox(
Poi nt & bottonlLeft, Point& topRight
) const;
virtual bool |sEnpty() const;
virtual Manipul ator* CreateManipul ator() const;
private:

Text Vi ewt _text;
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b

Text Shape nust initialize the pointer to the TextView instance, and it does so
inthe constructor. It nust al so call operations onits TextVi ewobject whenever
its owmn operations are called. In this exanple, assune that the client creates

the Text Vi ew object and passes it to the Text Shape constructor:

Text Shape: : Text Shape (TextView t) {

_text =t;

voi d Text Shape: : Boundi ngBox (
Poi nt & bottonLeft, Point& topRi ght
) const {

Coord bottom left, wdth, height;

_text->CGetOrigin(bottom left);
_text->Cet Extent (wi dth, height);

bottonlLeft = Point(bottom left);
topRi ght = Point(bottom + height, left + width);

bool Text Shape::IsEmpty () const {
return _text->IseEnpty();

Cr eat eMani pul ator' s i npl enent ati on doesn't change fromt he cl ass adapt er version,

since it's inplenmented fromscratch and doesn't reuse any existing TextView

functionality.

Mani pul at or* Text Shape: : Creat eMani pul ator () const {

return new Text Mani pul ator(this);

Compare this code to the cl ass adapter case. The obj ect adapter requires alittle
more effort to wite, but it's nore flexible. For exanple, the object adapter
versi on of Text Shape wi || work equal | y well with subcl asses of Text Vi ew-t he client

simply passes an instance of a TextVi ew subcl ass to the Text Shape constructor.
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¥YKnown Uses

The Motivation exanpl e cones fromET++Draw, a draw ng application based on ET++
[WGvB8] . ET++Draw reuses the ET++ cl asses for text editing by using a Text Shape

adapt er cl ass.

InterViews 2.6 defines an Interactor abstract class for user interface el enents
such as scrol | bars, buttons, and menus [VL88]. It al so defi nes a Graphi c abstract
cl ass for structuredgraphi c obj ects suchaslines, circles, pol ygons, and spli nes.
Bot h | nt eract ors and G- aphi cs have gr aphi cal appearances, but they have different
interfaces and inplenentations (they share no comon parent class) and are

therefore inconpatible—you can't enmbed a structured graphic object in, say, a

di al og box directly.

Instead, InterViews 2.6 defi nes an obj ect adapter cal | ed G aphi cBl ock, a subcl ass
of Interactor that contains a G aphic instance. The G aphi cBl ock adapts the
interface of the Graphic class to that of Interactor. The GraphicBlock lets a
Graphic instance be displayed, scrolled, and zoomed within an |nteractor

structure.

Pl uggabl e adapters are common in ObjectWrks\Snalltalk [Par90]. Standard

Smal | tal k defines a Val ueMbdel class for views that display a single val ue.
Val ueMbdel defines a value, value: interface for accessing the value. These are
abstract methods. Applicationwiters access the val ue with nore donai n-specific
nanes |ike width and wi dth:, but they shouldn't have to subcl ass Val ueMbdel to

adapt such application-specific names to the Val ueMbdel interface.

I nstead, Obj ect Wrks\Smalltalk includes a subclass of Val ueMddel called

Pl uggabl eAdapt or. APl uggabl eAdapt or obj ect adapts ot her obj ects tothe Val uevbdel
interface (value, value:). It can be paraneterized with bl ocks for getting and
setting the desired val ue. Pluggabl eAdaptor uses these blocks internally to

i mpl enent the value, value: interface. Pluggabl eAdaptor also lets you pass in
the sel ector nanes (e.g., width, width:) directly for syntactic convenience. It

converts these selectors into the correspondi ng bl ocks automatically.
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ValueModel

value:
vdlue

>

PluggableAdaptor

Object adaptes

value:
valg h------—+ —---1 " aetBlock value: adaptee

getBiock
setBlock

Anot her exanple from Object Wrks\Smalltalk is the Tabl eAdaptor class. A
Tabl eAdapt or can adapt a sequence of objects to atabul ar presentation. The table
di spl ays one object per row The client paraneterizes Tabl eAdaptor with the set

of messages that a table can use to get the colunmm values from an object.

Sone cl asses in NeXT's AppKit [ Add94] use del egate objects to performinterface
adapt ati on. An exanpl e i s the NXBrowser cl ass that can di splay hierarchical lists

of data. NXBrowser uses a del egate object for accessing and adapting the data.

Meyer's "Marriage of Conveni ence" [Mey88] is a formof class adapter. Meyer
descri bes how a Fi xedSt ack cl ass adapts the i npl enentation of an Array class to
the interface of a Stack class. The result is a stack containing a fixed nunber

of entries.

YRel ated Patterns

Bridge (171) hasastructuresimlar toanobject adapter, but Bridge has adifferent
intent: It is meant to separate aninterface fromits inplenentation so that they
can be vari ed easi |l y and i ndependent|y. An adapter i s neant to changetheinterface

of an existing object.

Decorator (196) enhances another object without changing its interface. A
decorator is thus nore transparent to the application than an adapter is. As a
consequence, Decorator supports recursive conposition, whichisn't possiblewth

pure adapters.

Proxy (233) defines a representative or surrogate for another object and does

not change its interface.
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CreateMani pulator is an exanple of a Factory Method (121).

170



Design Patterns: Elenents of Reusable Object-Oriented Software

Bri dge

¥ ntent

Decoupl e an abstraction fromits inplementation so that the two can vary

i ndependent | y.

YAl so Known As

Handl e/ Body

YMoti vati on

When an abstracti on can have one of several possible inplenmentations, the usual
way to accommpdate themis to use inheritance. An abstract class defines the
interface to the abstraction, and concrete subcl asses inplenent it in different
ways. But this approach isn't always flexible enough. |nheritance binds an

i mpl enentationtotheabstractionpermanently, whichmakesit difficult tonodify,

extend, and reuse abstractions and inplenmentations independently.

Consi der the i npl ementati on of a portabl e Wndow abstractionin auser interface
tool kit. This abstraction should enable us to wite applications that work on
both the X Wndow Systemand | BM s Presentati on Manager (PM, for exanple. Using
i nheritance, we coul d define an abstract class Wndow and subcl asses XW ndow and
PMW ndow t hat inplenent the Wndow interface for the different platfornms. But

this approach has two drawbacks:

1. It'sinconvenient toextendthe Wndowabstractiontocover different kinds
of wi ndows or newpl atforns. | magi ne an | conW ndow subcl ass of W ndow t hat
speci al i zes t he Wndow abstraction for icons. To support |conW ndows for
both platfornms, we have to inplenment two new cl asses, Xl conW ndow and
PM conW ndow. Worse, we'll have to define two cl asses for every kind of
wi ndow. Supportingathirdplatformrequiresyet anot her newW ndowsubcl ass

for every kind of w ndow.
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| Window | Window
A

| )(Winr.inw| |PMWindnw|

XWindow | |PMWindcmr| | IconWindow |

| XiconWindow | |PMiconWindow|

2. 1t nakes client code pl at f orm dependent. Whenever aclient creates aw ndow,
it instantiates a concrete class that has a specific inplenmentation. For
exanpl e, creating an XW ndow obj ect bi nds the W ndow abstraction to the
X W ndow i npl ement ati on, which makes the client code dependent on the X
W ndow i npl enentation. This, in turn, makes it harder to port the client

code to other platforns.

Clients should be able to create a wi ndoww thout conmtting to a concrete
i mpl ementation. Only the wi ndow i npl ementati on shoul d depend on the
pl atform on which the application runs. Therefore client code should

instanti ate wi ndows wi thout nentioning specific platformns.

The Bridge pattern addresses these problens by putting the Wndow abstracti on
anditsinplementationinseparate class hierarchies. Thereis one cl ass hierarchy
for window interfaces (W ndow, |conWndow, Transi entWndow) and a separate

hi erarchy for platformspecific window inplenmentations, with Wndownp as its

root. The XW ndowl np subcl ass, for exanple, provides an inplenentation based on
the X Wndow System
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Al'l operations on Wndowsubcl asses areinpl enentedinterns of abstract operations

fromthe Wndow np interface.

Thi s decoupl es the w ndow abstractions fromthe

various platformspecific inplenentations. We refer to the rel ati onshi p between

W ndow and W ndowl np as a bridge,

i mpl enent ati on,

YApplicability

Use the Bridge pattern when

letting them vary independently.

because it bridges the abstraction and its

you want to avoid a pernmanent binding between an abstraction and its
i mpl enent ati on. Thi s m ght bethecase, for exanpl e, whentheinpl ementati on

must be selected or switched at run-tine.

both the abstractions and their inplenmentations should be extensible by
subcl assing. Inthiscase, theBridgepatternlets youconbinethedifferent

abstractions and inpl ementati ons and extend them i ndependently.

changes in the i npl enmentati on of an abstracti on should have no i npact on
clients; that is, their code should not have to be reconpil ed.

(C++) you want to hide the i npl enentati on of an abstracti on conpletely from
clients. In C+t+ the representation of a class is visible in the class

i nterface.

you have a proliferationof classes as shownearlier inthefirst Motivation
di agram Such a cl ass hierarchy indicates the need for splitting an obj ect
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into two parts. Runbaugh uses the term"nested generalizations" [ RBP+91]
to refer to such class hierarchies.

you want to share an i npl ement ati on anong nul ti pl e obj ects (perhaps using
reference counting), andthisfact shoul dbe hiddenfromtheclient. Asinple
exanple is Coplien's String class [Cop92], in which multiple objects can

share the sane string representation (StringRep).

YStructure

o |-mp
Abstraction  [_» = implementor
Operation{} @ Operationimpf)
1

L____| imp-=Operationimp(); /k

RefinedAbstraction

ConcretelmplementorA ConcretelmplementorB

Operationkmpi) Operationfmgp()

YPartici pants

Abstracti on (W ndow)

0 defines the abstraction's interface.

O maintains a reference to an object of type |Inplenentor.
Ref i nedAbstraction (IconW ndow)

0 Extends the interface defined by Abstraction.
| mpl enent or (W ndow np)

0 defines the interface for inplenentation classes. This interface
doesn't have to correspond exactly to Abstraction's interface; in
fact the two interfaces can be quite different. Typically the
I mpl enentor interface provides only prinitive operations, and
Abstraction defines higher-Ievel operations based on these
primtives.

Concr et el mpl enent or ( XW ndowl np, PMA ndow np)
O inplements the Inplenmentor interface and defines its concrete

i mpl enent ati on.
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¥Col | aborati ons

Abstraction forwards client requests to its | nplenentor object.

¥Consequences

The Bridge pattern has the follow ng consequences:

1. Decoupling interface and inpl enentation. An inplenmentation is not bound
permanently to an i nterface. The i npl enentation of an abstracti on can be
configured at run-tinme. It's even possible for an object to change its

i mpl enentation at run-time.

Decoupling Abstraction and | nplenmentor also elinmnates conpile-tine
dependenci es on the inplenentati on. Changi ng an inplenmentation class
doesn't require reconpiling the Abstraction class and its clients. This
property is essential when you nust ensure binary conpatibility between

different versions of a class library.

Furthernmore, this decoupling encourages layering that can lead to a
better-structured system The hi gh-|evel part of a systemonly has to know

about Abstraction and I npl enentor.

2. Inproved extensibility. You can extend the Abstracti on and | npl enentor
hi erarchi es i ndependently.

3. Hding inplementation details fromclients. You can shield clients from
i mpl enentation details, like the sharing of inplenmentor objects and the

acconpanyi ng reference count nechanism (if any).

Y| npl enent ati on

Consi der the follow ng inplementation i ssues when applying the Bridge pattern:

1. Onlyonelmplenentor. Insituations wherethere's only oneinplenentation,
creatinganabstract I nplenentor classisn't necessary. Thisisadegenerate
case of the Bridge pattern; there's a one-to-one rel ati onship between
Abstraction and | npl ementor. Neverthel ess, this separationisstill useful
when a change in the i npl ementation of a class nust not affect its existing

clients—that is, they shouldn't have to be reconpiled, just relinked.

Carol an [ Car89] uses the term"Cheshire Cat" to describe this separation.

In C++, the class interface of the Inplenentor class can be defined in a
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private header file that isn't provided to clients. This |l ets you hide an

i mpl enentation of a class conpletely fromits clients.

2. Creating the right |nplenentor object. How, when, and where do you deci de

whi ch I nplementor class to instantiate when there's nore than one?

I f Abstraction knows about all Concretel nplenentor classes, then it can
instantiate one of theminits constructor; it can deci de between t hembased
on paraneters passedtoits constructor. |If, for exanpl e, acollectionclass
supports nultiple inplenmentations, the decision can be based on the size
of the collection. Alinked Iist inplementati on can be used for snall

collections and a hash table for |arger ones.

Anot her approachis tochooseadefault inplementationinitially andchange
it later according to usage. For exanple, if the collection grows bigger
thanacertainthreshold, thenit switchesitsinplenentationtoonethat's

nore appropriate for a large nunber of itens.

It's al so possible to del egate the deci sion to anot her object al together.
In the Wndow W ndow np exanpl e, we can introduce a factory object (see
Abstract Factory (99)) whose sol edutyistoencapsul ate platformspecifics.
The factory knows what ki nd of W ndow np obj ect to create for the platform
inuse; a Wndowsinply asks it for a Wndowl np, and it returns the right
ki nd. Abenefit of this approachisthat Abstractionis not coupleddirectly

to any of the |Inplenmentor classes.

3. Sharinginplenmentors. Coplienillustrates howthe Handl e/ Body i di omi n C++
can be used to share inplenmentations anong several objects [Cop92]. The
Body stores a reference count that the Handl e class increnents and
decrenments. The code for assigning handles with shared bodi es has the

foll owi ng general form

Handl e& Handl e: : operator= (const Handl e& other) {
ot her. _body->Ref ();
_body->Unref();

if (_body->RefCount() == 0) {
del ete _body;
}

_body = other._body;

return *this;
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4. Using nultiple inheritance. You can use nultiple inheritance in C++ to
conbineaninterfacewithits inplenmentation[Mr91]. For exanple, a class
can inherit publicly from Abstraction and privately froma
Concr et el npl enentor. But because this approach relies on static
inheritance, it binds an inplenmentation pernmanently to its interface.
Therefore you can't inplenent atrue Bridge with multiple inheritance—at

| east not in C++.

¥Sanpl e Code

The fol | owi ng C++ code i npl ement s t he Wndow W ndowl np exanpl e fromt he Mbti vati on

section. The Wndowcl ass defi nes the wi ndowabstraction for client applications:

cl ass W ndow {
public:
W ndow Vi ew* contents);

/1 requests handl ed by w ndow

virtual void DrawContents();

virtual void Open();
virtual void Cose();
virtual void lconify();

virtual void Deiconify();

/1 requests forwarded to inplenentation
virtual void SetOrigin(const Point& at);
virtual void SetExtent(const Point& extent);
virtual void Raise();

virtual void Lower();

virtual void DrawLi ne(const Pointé& const Point&);
virtual void DrawRect (const Pointé& const Pointg&);
virtual void DrawPol ygon(const Point[], int n);

virtual void DrawText(const char*, const Point&);

pr ot ect ed:
W ndow nmp* Get W ndow np() ;
View CetView);

private:

W ndow np* _i np;
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View _contents; // the window s contents

b

W ndow naintains a reference to a Wndow np, the abstract class that declares

an interface to the underlying wi ndowi ng system

cl ass Wndow np {

public:
virtual void InpTop() = O;
virtual void InpBotton() = O;

virtual void | npSetExtent(const Point&) 0;

virtual void |InpSetOigin(const Point&)

0;

virtual void DeviceRect (Coord, Coord, Coord, Coord) = O;
virtual void DeviceText(const char*, Coord, Coord) = O;
virtual void DeviceBitnmap(const char*, Coord, Coord) = O;
/1 lots nore functions for drawi ng on wi ndows. ..

pr ot ect ed:

W ndow nmp() ;
H

Subcl asses of W ndow define the different kinds of wi ndows the application m ght
use, such as application wi ndows, icons, transient wi ndows for dial ogs, floating

pal ettes of tools, and so on.

For exanpl e, ApplicationWndow will inplement DrawContents to draw the View

instance it stores:

cl ass Applicati onWndow : public Wndow {
public:

I

virtual void DrawContents();
b

voi d Applicati onWndow: : DrawContents () {

Get Vi ew( ) - >DrawOn(t hi s);

| conW ndow stores the name of a bitmap for the icon it displays...

class | conWndow : public Wndow {

public:

178



Design Patterns: Elenents of Reusable Object-Oriented Software

/1
virtual void DrawContents();
private:

const char* _bitmapNaneg;

}s

.and it inplements DrawContents to draw the bitmap on the w ndow

voi d | conW ndow. : DrawCont ent s() {
W ndow np* inp = Get Wndow np();
if (imp!'=0) {
i np- >Devi ceBi t map(_bi t mapNane, 0.0, 0.0);

Many other variati ons of Wndow are possible. A Transi ent Wndow may need to
communi cate with the window that created it during the dialog; hence it keeps
a reference to that wi ndow. A PaletteWndow al ways fl oats above ot her w ndows.

An | conDockW ndow hol ds | conW ndows and arranges them neatly.

W ndow operations are defined in terns of the Wndowl np i nterface. For exanple,
DrawRect extracts four coordinates fromits two Point paraneters before calling

the W ndow np operation that draws the rectangle in the w ndow

voi d W ndow: : DrawRect (const Point& pl, const Point& p2) {
W ndow nmp* i nmp = Get Wndow np();
i np->Devi ceRect (p1. X(), pl.Y(), p2.X(), p2.Y());

Concr et e subcl asses of W ndow np support different wi ndowsystens. The XW ndow np

subcl ass supports the X W ndow System

class XWndowl np : public Wndow np {
public:
XW ndow nmp() ;

virtual void DeviceRect(Coord, Coord, Coord, Coord);
/1 remainder of public interface...

private:
/1 lots of X w ndow systemspecific state, including:
Di splay* _dpy;
Drawable _winid; // windowid
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GC _gc; /1 w ndow graphi c context

For Presentati on Manager (PM, we define a PMAN ndowl np cl ass:

cl ass PMW ndowl np : public Wndow np {
public:
PMAN ndowl nmp() ;
virtual void DeviceRect(Coord, Coord, Coord, Coord);

/1 remainder of public interface...

private:
/1 lots of PMw ndow systemspecific state, including:
HPS _hps;

b

These subcl asses i npl enent W ndowl np operations in terns of w ndow system

primtives. For exanple, DeviceRect is inplenented for X as foll ows:

voi d XW ndow np: : Devi ceRect (
Coord x0, Coord yO, Coord x1, Coord yl
) |

int x

round(m n(x0, x1));

inty round(m n(yO0, y1));
int w=round(abs(x0 - x1));

int h = round(abs(y0 - y1));

XDr awRect angl e(_dpy, _winid, _gc, X, y, w, h);

The PM i npl enentation mght ook like this:

voi d PMW ndow np: : Devi ceRect (

Coord x0, Coord yO, Coord x1, Coord yl
) |

Coord left = mn(x0, x1);

Coord right = max(x0, x1);

Coord bottom = min(y0, yl1);

Coord top = nmax(y0, yl);

PPO NTL point[4];

point[0].x = left; point[0].y = top;
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point[1].x = right; point[1].y = top;
point[2].x = right; point[2].y = bottom
point[3].x = left; point[3].y = bottom
if (
(Gpi Begi nPat h(_hps, 1L) == false) ||
(Gpi Set Current Posi tion(_hps, &point[3]) == false) ||
(Gpi Pol yLi ne(_hps, 4L, point) == GPI_ERROR) ||
(Gpi EndPat h(_hps) == fal se)
) |

/'l report error

} else {

Gpi StrokePat h(_hps, 1L, OL);

How does a wi ndow obt ai n an i nstance of the ri ght Wndow np subcl ass? W' || assune
W ndow has that responsibility inthis exanple. Its Get Wndowl np operation gets
the right instance froman abstract factory (see Abstract Factory (99)) that

ef fectively encapsul ates all wi ndow system specifics.

W ndowl np* W ndow: : Get W ndowl np () {
if (Limp ==0) {
_imp = WndowSyst enfactory: : I nstance()->MakeW ndowl np();
}

return _inp;

W ndowSyst enfactory:: I nstance() returns an abstract factory that nanufactures
all wi ndow system specific objects. For sinplicity, we've nmade it a Singleton

(144) and have let the Wndow cl ass access the factory directly.

¥YKnown Uses

The W ndow exanpl e above comes from ET++ [WGWMB8]. In ET++, Wndownp is called
"W ndowPort" and has subcl asses such as XW ndowPort and SunW ndowPort. The W ndow
object creates its corresponding | nplenentor object by requesting it froman

abstract factory called "WndowSystem " W ndowSyst em provi des an interface for

creating platformspecific objects suchas fonts, cursors, bitmaps, and so forth.

The ET++ W ndow W ndowPor t desi gn extends t he Bri dge patterninthat t he W ndowPort

al so keeps a reference back to the Wndow. The W ndowPort i npl ementor cl ass uses
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this reference to notify Wndow about W ndowPort-specific events: the arrival

of input events, w ndow resizes, etc.

Bot h Coplien [ Cop92] and Stroustrup [ Str91] nention Handl e cl asses and gi ve sonme
exanpl es. Their exanpl es enphasi ze nenory nanagenent issues |ike sharing string
representations and support for variabl e-sized objects. Qur focus is nore on

supporting i ndependent extension of both an abstraction and its inplenmentation.

i bg++ [LeaB88] defines classes that inplenent conmon data structures, such as
Set, LinkedSet, HashSet, LinkedList, and HashTabl e. Set i s an abstract cl ass t hat
defines a set abstraction, while LinkedList and HashTabl e are concrete

i mpl enentors for a linked |list and a hash table, respectively. LinkedSet and
HashSet are Set inplenmentors that bridge between Set and their concrete

count erparts Li nkedLi st and HashTabl e. Thi s i s an exanpl e of a degenerate bridge,

because there's no abstract |nplenentor class.

NeXT's AppKit [ Add94] uses the Bridge pattern in the inplenentation and di spl ay
of graphical inmages. An inmage can be represented i n several different ways. The
optimal display of an inmge depends on the properties of a display device,
specificallyits color capabilities andits  resolution. Wthout hel p fromAppKit,
devel opers woul d have to determ ne which inplenmentation to use under various

circunstances in every application.

To relieve developers of this responsibility, AppKit provides an

NXI mage/ NXI mageRep bridge. NXlImage defines the interface for handling inmages.
The i npl ement ati on of images is defined in a separate NXI nageRep cl ass hi erarchy
havi ng subcl asses such as NXEPSI nageRep, NXCachedl mageRep, and NXBi t Mapl mageRep.
NXI mage mai ntains a reference t o one or nore NXI nageRep obj ects. |If thereis nore
t han one i mage i npl ement ati on, t hen NXI nmage sel ects t he nost appropriate one for
the current display device. NXImage is even capabl e of converting one

i mpl enentation to another if necessary. The interesting aspect of this Bridge
variant is that NXInage can store nore than one NXl mageRep i nplenmentation at a

tinme.

YRel ated Patterns

An Abstract Factory (99) can create and configure a particular Bridge.

The Adapter (157) patternis gearedtoward nmaki ng unrel ated cl asses work t oget her.
It is usually applied to systens after they're designed. Bridge, on the other
hand, is used up-front in a designto |let abstractions and i npl ementations vary

i ndependent|y.
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¥ ntent

Conposite

Conpose objects into tree structures to represent part-whol e hierarchies.

Conposite lets clients treat

uni formy.

YMoti vati on

i ndi vi dual

obj ects and conpositions of objects

G aphi cs applications|ikedraw ngeditors and schematic capture systens | et users

buil d conpl ex di agrans out of sinple conmponents.

to formlarger conponents,

which in turn can be grouped to formstill

The user can group conponents

| ar ger

components. Asinpleinplenentation coul ddefineclasses for graphical primtives

such as Text and Lines plus other classes that act as containers for these

primtives.

But there's a problemw th this approach: Code t hat uses these cl asses nust treat

primtive and contai ner objects differently,

even if nost of the tinme the user

treatsthemidentically. Havingto distinguishthese objects makesthe application

nor e conpl ex.

The Conposite pattern describes howto use recursive conposition

so that clients don't have to make this distinction.

Graphic

Dirawi}
Ada{Graphic)

Remove(Graphic)

GetChild{ing)

A

The key to the Conposite pattern is an abstract class that

GetChikd(int

add g to list of graphics

graphics
Line Rectangle Text Picture fo————
- D=l
Draw() Diraw) Diraw() Draw(} O----——-f-—————------- flzlraIIDc_:lr E:.g g}r&phlcs
. L
Add{Graphic g} S F——- -l g _
Remove(Graphic) :__ N =

represents both

primtives and their containers. For the graphics system this class is G aphic.

Graphi ¢ decl ares operations |ike Draw that are specific to graphical

obj ect s.
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I't al so decl ares operations that all conposite objects share, such as operations

for accessing and managing its children.

The subcl asses Line, Rectangle, and Text (see preceding class diagram define
primtive graphical objects. These classes inplenent Draw to draw |ines,
rectangl es, and text, respectively. Since primtive graphics have no child

graphi cs, none of these subcl asses inplenents child-rel ated operations.

The Picture class defines an aggregate of Gaphic objects. Picture inplenments
Draw to call Draw on its children, and it inplenments child-related operations
accordi ngly. Because the Picture interface confornms to the Graphic interface,

Pi cture objects can conpose other Pictures recursively.

The fol I owi ng di agramshows a typical conposite object structure of recursively

composed G aphi c objects:

aPicture

aPicture aRectangle

aRectangle

(Coren | (Coee)

YApplicability

Use the Conposite pattern when

you want to represent part-whole hierarchies of objects.

you want clients to be able to ignore the difference between conpositions
of objects and individual objects. Cients will treat all objects in the

composite structure uniformy.
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¥YStructure

Client |—  pe Component l....

Cparation{}
Addf{Companant)
Ramove(Camponeant)
GatChiaiing

| A\ |

Leaf Composite

childran

. L forall g in children =
Qperation() Cperation{) ©------fF-—-------- g.Operation();
Add{Componant)

Femove[Componant)

GetChild{ing

A typical Conposite object structure mght look |ike this:

aComposite

[—a!_eaf

aComposite

[ateat | ( ateat | [ alear |

YParticipants

Conponent (Graphic)
0 declares the interface for objects in the conposition.
0 inplenments default behavior for theinterfacecomontoall cl asses,
as appropriate.
0 declares an interface for accessing and managing its child
conponent s.
0 (optional) defines aninterface for accessing a conponent's parent
intherecursivestructure, andinplenmentsit if that's appropriate.
Leaf (Rectangle, Line, Text, etc.)
0 represents | eaf objects in the conposition. Aleaf has no children.
0 defines behavior for primtive objects in the conposition.

Conposite (Picture)
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0 defines behavior for conmponents having children.
0 stores child conponents.

O inplements child-related operations in the Conponent interface.

O nanipulates objects in the conposition through the Conponent

interface.

¥Col | aborati ons

Clients use the Conponent class interface to interact with objects inthe
composite structure. If therecipient isaleaf, thentherequest i s handl ed

directly. If therecipient isaConposite, thenit usually forwardsrequests
toits child conmponents, possibly perform ng addi ti onal operations before

and/ or after forwarding.

¥YConsequences

The Conposite pattern

defines class hierarchies consisting of primtive objects and conposite
objects. Primtive objects can be conposed i nt o nore conpl ex obj ects, which

i nturncan be conmposed, and so on recursively. Werever client code expects
a primtive object, it can also take a conposite object.

makes the client sinple. Cients can treat conposite structures and

i ndi vidual objects uniformy. dients normally don't know (and shoul dn't
care) whether they're dealing with a | eaf or a conposite conponent. This
simplifies client code, because it avoids having to wite

t ag- and- case-statenent-styl e functions over the classes that define the
composi ti on.

makes it easier to add new ki nds of conponents. Newly defined Conposite
or Leaf subcl asses work automatically with exi sting structures and client
code. Cients don't have to be changed for new Conponent cl asses.

can nmeke your design overly general. The di sadvantage of making it easy
to add newconponents isthat it nakes it harder torestrict the conponents
of a conposite. Sonetimes you want a conposite to have only certain
conponents. Wth Conposite, you can't rely on the type systemto enforce

those constraints for you. You'll have to use run-tine checks instead.

Y| npl enent ati on

There are many issues to consider when inplenenting the Conposite pattern:
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Explicit parent references. Mintaining references fromchild components
to their parent can sinplify the traversal and nanagenent of a conposite
structure. The parent reference sinplifies noving up the structure and
del eting a conponent. Parent references al so hel p support the Chain of

Responsi bility (251) pattern

The usual place to define the parent reference is in the Conmponent class
Leaf and Conposite classes can inherit the reference and the operations

that manage it.

Wth parent references, it's essential to maintainthe invariant that al
children of a conposite have as their parent the conposite that in turn
has them as children. The easiest way to ensure this is to change a
conponent's parent only whenit's being added or renoved froma conposite.
If this can be inplenmented once in the Add and Renove operations of the
Conposite class, then it can be inherited by all the subclasses, and the

invariant will be maintai ned automatically.

Sharing conmponents. It's often useful to share conponents, for exanple,
to reduce storage requi rements. But when a conmponent can have no nore t han

one parent, sharing conponents becomes difficult.

A possible solution is for children to store nmultiple parents. But that
can lead to anbiguities as a request propagates up the structure. The
Fl ywei ght (218) patternshows howtorework adesigntoavoidstoringparents
altogether. It works in cases where children can avoid sendi ng parent

requests by externalizing sone or all of their state.

Maxi m zi ng t he Conponent interface. One of the goals of the Conposite
patternisto mke clients unaware of the specific Leaf or Conposite cl asses
they're using. To attain this goal, the Conponent class should define as
many common operations for Conposite and Leaf classes as possible. The
Component cl ass usually provides default inplenmentations for these

operations, and Leaf and Conposite subclasses will override them

However, this goal will sonetines conflict with the principle of class
hi erarchy design that says a cl ass shoul d only defi ne operations that are
neani ngful to its subclasses. There are many operations that Conponent
supports that don't seemto make sense for Leaf cl asses. How can Conponent

provide a default inplementation for then?

Sometimes alittle creativity shows how an operation that woul d appear to
make sense only for Conposites can be inplenmented for all Conponents by
moving it to the Conmponent cl ass. For exanple, the interface for accessing

children is a fundanental part of a Conposite class but not necessarily
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Leaf classes. But if we viewa Leaf as a Conponent t hat never has children,
then we can define a default operation for child access in the Conmponent
class that never returns any children. Leaf classes can use the default
i mpl enent ati on, but Conposite classes will reinplenent it toreturntheir

chil dren.

The chi |l d nanagenent operati ons are nore troubl esone and are di scussed in

the next item

4. Declaring the child nanagenent operations. Al though the Conposite class
i mpl enent st he Add and Renove oper ati ons f or managi ng chi | dren, ani nport ant
issue in the Conposite pattern is which classes declare these operations
in the Conposite class hierarchy. Should we declare these operations in
t he Conponent and nmeke t hemneani ngful for Leaf cl asses, or shoul d we decl are

and define themonly in Conposite and its subcl asses?
The decision involves a trade-off between safety and transparency:

0 Defining the child managenment interface at the root of the class
hi erarchy gives you transparency, because you can treat all
conponents uniformy. It costs you safety, however, because clients
may try to do nmeaningless things |ike add and renove objects from
| eaves.

0 Defining child managenment in the Conposite class gives you safety,
because any attenpt to add or renobve objects fromleaves will be
caught at conpile-timeinastatically typed|anguage |ike C++. But
you | ose transparency, because | eaves and conposi tes have di fferent

i nterfaces.

We have enphasi zed transparency over safety in this pattern. If you opt
for safety, then at tinmes you may | ose type i nformati on and have t o convert
a conponent into a conposite. How can you do this without resorting to a

type-unsafe cast?

One approach is to decl are an operation Conposite* Get Conposite() in the
Conponent cl ass. Conponent provi des a def aul t operationthat returns anull
poi nter. The Conposite class redefines this operation to return itself

through the this pointer:

cl ass Conposite;

cl ass Conponent {
public:
/...
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virtual Conposite* GetConposite() { return 0; }
b

class Conposite : public Conmponent {
public:

voi d Add( Conponent *);

11

virtual Conposite* GetConposite() { return this; }
b

cl ass Leaf : public Conmponent {
/1

CGet Conposite lets you query a conponent to see if it's a conposite. You

can perform Add and Renmove safely on the conposite it returns.

Conposi te* aConposite = new Conposite;

Leaf * aLeaf = new Leaf;

Conponent * aConponent ;
Conposite* test;

aConponent = aConposite;
if (test = aConponent->Get Conposite()) {
test - >Add(new Leaf);

aConponent = aleaf;

if (test = aConponent->Get Conposite()) {

test->Add(new Leaf); // will not add |eaf

Simlar tests for a Conposite can be done using the C++ dynam c_cast

construct.

O course, the problemhereisthat wedon't treat all conponents uniformy.
We have to revert to testing for different types before taking the

appropriate action.

The only way to provide transparency is to define default Add and Renove

operations in Conponent. That creates a new problem There's no way to
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i mpl enment Conponent: : Add wi t hout i ntroducingthe possibilityof it failing.
You coul d make it do not hing, but that i gnores an i nportant consideration;
that is, an attenpt to add sonething to a | eaf probably indicates a bug.
Inthat case, the Add operation produces garbage. You could nake it del ete

its argunent, but that m ght not be what clients expect.

Usually it's better to make Add and Renove fail by default (perhaps by
rai sing an exception) if the conponent isn't allowed to have children or

if the argunment of Renopve isn't a child of the component, respectively.

Anot her alternative is to change the nmeani ng of "renove" slightly. If the
component naintains a parent reference, then we coul d redefine
Component : : Renpbve to renove itself fromits parent. However, there still

isn't a neaningful interpretation for a correspondi ng Add.

Shoul d Conponent inplenent a list of Conponents? You m ght be tenpted to
define the set of children as an instance variable in the Conmponent cl ass
wher e the chil d access and managenent operati ons are decl ared. But putting
the child pointer in the base class i ncurs a space penalty for every | eaf,
even though a | eaf never has children. This is worthwhile only if there
are relatively few children in the structure.

Child ordering. Many designs specify an ordering on the children of
Composite. In the earlier Gaphics exanple, ordering may reflect
front-to-back ordering. |f Conposites represent parsetrees, then conpound
statements can be i nst ances of a Conposite whose children nmust be ordered

to reflect the program

When child orderingis anissue, you nust design chil daccess and nanagenent
interfaces carefully to nmanage t he sequence of children. The |terator (289)

pattern can guide you in this.

Caching to inprove performance. |f you need to traverse or search

compositions frequently, the Conposite class can cache traversal or search
i nformati on about its children. The Conposite can cache actual results or
just information that lets it short-circuit the traversal or search. For
exanple, the Picture class fromthe Mtivati on exanple coul d cache the
boundi ng box of its children. During drawi ng or selection, this cached
boundi ng box | ets the Picture avoi d drawi ng or searchi ng when its children

aren't visible in the current w ndow.

Changes to a conponent will requireinvalidatingthe caches of its parents.
This works best when conponents know their parents. So if you're using
caching, you needto define aninterface for telling conposites that their

caches are invalid.
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8. Who shoul d del et e component s? I n | anguages wi t hout gar bage coll ection, it's
usual | y best t o make a Conposi te responsi bl e for deletingits childrenwhen
it's destroyed. An exceptiontothisruleis when Leaf objects areimutable
and thus can be shared.

9. What's the best data structure for storing conponents? Conposites nmay use
avariety of datastructurestostoretheir children, includinglinkedlists,
trees, arrays, and hash tables. The choi ce of data structure depends (as
al ways) on efficiency. In fact, it isn't even necessary to use a
general - purpose datastructureat all. Soneti mes conposites have avari abl e
for each child, although this requires each subclass of Conposite to
i mpl enent its own nmanagerment interface. See Interpreter (274) for an
exanpl e.

¥Sanpl e Code

Equi pnment such as conputers and stereo conponents are often organi zed into

part-whol e or contai nment hierarchies. For exanple, a chassis can contain drives

and pl anar boards, a bus can contain cards, and a cabinet can contain chassis,

buses, and so forth. Such structures can be nodel ed naturally with the Conposite

pattern.

Equi pnent cl ass defines aninterfacefor all equi pnent i nthe part-whol e hi erarchy.

cl ass Equi pnent {

public:

virtual ~Equi prent();

const char* Nanme() { return _nane; }

virtual Watt Power();
virtual Currency NetPrice();

virtual Currency DiscountPrice();

virtual void Add(Equi pnent*);
virtual void Renpve(Equi pnent*);

virtual Iterator* Createlterator();

pr ot ect ed:

Equi pnent (const char*);

private:

}s

const char* _nane;
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Equi pnent decl ares operations that return the attri butes of a pi ece of equi pnent,
like its power consunption and cost. Subcl asses i npl ement these operations for
speci fic kinds of equi pment. Equi pment al so declares a Createlterator operation
that returns an Iterator (see Appendi x C) for accessing its parts. The default
i mpl enentation for this operation returns a Nulllterator, which iterates over

the enpty set.

Subcl asses of Equi pment mi ght include Leaf classes that represent di sk drives,

integrated circuits, and sw tches:

cl ass FloppyDi sk : public Equiprent {
public:

Fl oppyDi sk(const char*);

virtual ~Fl oppyDisk();

virtual Watt Power();
virtual Currency NetPrice();

virtual Currency DiscountPrice();

b

Composi t eEqui pment i s t he base cl ass for equi pnent that cont ai ns ot her equi pnent.

It's also a subclass of Equi pnent.

cl ass Conposit eEqui pnent : public Equi pment {
public:
virtual ~ConpositeEquipnent();

virtual Watt Power();
virtual Currency NetPrice();

virtual Currency DiscountPrice();

virtual void Add(Equi pnent*);
virtual void Renpve(Equi pnent*);

virtual lterator* Createlterator();

pr ot ect ed:

Conposi t eEqui prent (const char*);
private:

Li st _equi prent;

b
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Conposi t eEqui pnent defines the operations for accessi ng and nanagi ng subequi pnent.
The oper ati ons Add and Renpve i nsert and del et e equi pnent fromt he |i st of equi prent
storedinthe _equi pnent nmenber. The operation Createlterator returns aniterator

(specifically, an instance of Listlterator) that will traverse this list.

Adefault i npl ementationof NetPrice mi ght use Createlterator tosumthe net prices

of the subequi pnent2:

Currency ConpositeEqui pment:: NetPrice () {
Iterator* i = Createlterator();

Currency total = O;

for (i->First(); !'i->IsDone(); i->Next()) {
total +=i->Currentlten()->NetPrice();

}

delete i;

return total;

Nowwe can represent a conputer chassi s as a subcl ass of Conposi t eEqui pnent cal | ed

Chassis. Chassis inherits the child-rel ated operations fromConpositeEqui prment.

class Chassis : public ConpositeEqui pment {
public:
Chassi s(const char*);

virtual ~Chassis();

virtual Watt Power();
virtual Currency NetPrice();

virtual Currency DiscountPrice();

}s

We can define other equipnment containers such as Cabinet and Bus in a sinilar
way. That gi ves us everyt hing we need t o assenbl e equi pent into a (pretty sinple)

personal conputer:

Cabi net* cabi net = new Cabi net ("PC Cabinet");

Chassi s* chassis = new Chassi s("PC Chassis");
cabi net - >Add( chassi s) ;

Bus* bus = new Bus("MCA Bus");
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bus- >Add(new Card("16Mds Token Ring"));

chassi s- >Add( bus) ;
chassi s- >Add( new Fl oppyDi sk("3.5in Floppy"));

cout << "The net price is " << chassis->NetPrice() << endl;

¥YKnown Uses

Exampl es of the Conposite pattern can be found in alnost all object-oriented
systenms. The original Viewclass of Smalltal k Model /View Control |l er [ KP88] was
a Conposite, and nearly every user interface toolkit or framework has fol |l owed
inits steps, including ET++ (with its VObjects [WaVB8]) and InterViews (Styles
[LCA +92], Graphics [VL88], and A yphs [CL90]). It's interesting to note that the
original View of Mdel/View Controller had a set of subviews; in other words,
Vi ew was both the Conponent class and the Conposite class. Rel ease 4.0 of
Sl | t al k- 80 revi sed Model / Vi ew Control |l er with a Vi sual Conponent cl ass t hat has

subcl asses Vi ew and ConpositeVi ew.

The RTL Smalltal k conpiler framework [JM.92] uses the Conposite pattern
extensi vel y. RTLExpressionis aConponent cl ass for parsetrees. |t has subcl asses,
such as Bi nar yExpressi on, t hat containchild RTLExpressi on obj ects. These cl asses
define a conposite structure for parse trees. RegisterTransfer is the Conponent
class for a programs internediate Single Static Assignment (SSA) form Leaf

subcl asses of RegisterTransfer define different static assignments such as

primtive assi gnnents that performan operationontworegisters and assi gn
the result to a third;
an assignment with a source register but no destination register, which

indicates that the register is used after a routine returns; and

an assignnent with a destination register but no source, which indicates
that the register is assigned before the routine starts.

Anot her subcl ass, RegisterTransferSet, is a Conposite class for representing

assignments that change several registers at once.

Anot her exanpl e of this pattern occurs inthe financial domain, where a portfolio
aggregat es i ndivi dual assets. You can support conpl ex aggregati ons of assets by
i mpl enenting a portfolio as a Conposite that conforns to the interface of an
i ndi vi dual asset [BE93].

The Conmand (263) pattern describes how Command objects can be conposed and

sequenced wi th a MacroConmand Conposite cl ass.
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YRel ated Patterns

O ten the conponent-parent link is used for a Chain of Responsibility (251).

Decorator (196) is often used wi th Conposite. Wien decorators and conposites are
used together, they will usually have a common parent class. So decorators will
have to support the Conponent interface with operations |ike Add, Renpve, and
Get Chi | d.

Fl ywei ght (218) | ets you share conponents, but they can no | onger refer to their

parents.
Iterator (289) can be used to traverse conposites.

Visitor (366) localizes operations and behavior that woul d ot herw se be

di stributed across Conposite and Leaf classes.

’It's easy to forget todeletetheiterator once you're donewithit. The Iterator

pattern shows how to guard agai nst such bugs on page 299.
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Decor at or

¥ ntent

Attach additional responsibilities to an object dynam cally. Decorators provide

a flexible alternative to subclassing for extending functionality.

YAl so Known As

W apper

YMoti vati on

Sonetimes we want to add responsibilities to individual objects, not toanentire
class. A graphical user interface toolkit, for exanple, should let you add
properties |ike borders or behaviors like scrolling to any user interface

conponent .

One way to add responsibilities is with inheritance. Inheriting a border from
anot her cl ass puts a border around every subclass instance. This is inflexible,
however, because the choi ce of border is made statically. Aclient can't control

how and when to decorate the conponent with a border.

A nore flexi bl e approach is to encl ose the conponent in anot her object that adds
the border. The encl osing object is called a decorator. The decorator conforns
totheinterface of the conmponent it decorates sothat its presenceis transparent
to the conmponent's clients. The decorator forwards requests to the conponent and
may perform additional actions (such as drawing a border) before or after

forwardi ng. Transparency | ets you nest decorators recursively, thereby allow ng

an unlimted nunber of added responsibilities.
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For exanpl e, suppose we have a TextVi ew obj ect that displays text in a w ndow.
Text Vi ew has no scroll bars by default, because we m ght not always need them
Wen we do, we can use a Scroll Decorator to add them Suppose we also want to
add a thick black border around the TextView. W can use a BorderDecorator to
add this as well. W sinply conpose the decorators with the TextViewto produce

the desired result.

The follow ng object diagram shows how to conpose a TextView object with
Bor der Decorat or and Scrol | Decorator objects to produce a bordered, scrollable

text view

( aBorderDecorator | —
aScrollDecorator

component l

pR— ] _I/ aTextView -j

The Scrol | Decor at or and Border Decorator cl asses are subcl asses of Decorator, an

abstract class for visual conponents that decorate other visual conponents.
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VisualComponent

Drawy)
| | componant

TextView Decorator

Diraw() Drraw() o-———-q--——=—="————-————-———+ component-=Draw()
ScrolliDecorator BorderDecarator

N Decorator: Draw(), =

Diraw() D‘a"'"-"ln' i mlilh DrawBorder):
ScroliTol) DrawBorder)
seroliPosition borderWidth

Vi sual Conponent i s the abstract cl ass for visual objects. It defines their draw ng
and event handling interface. Note howthe Decorator class sinply forwards draw

requeststoits conmponent, and howDecor at or subcl asses can extend t hi s operati on.

Decor at or subcl asses are free to add operations for specific functionality. For
exanpl e, Scroll Decorator's Scroll To operation |lets other objects scroll the
interfaceif they knowthere happenstobe a Scroll Decorator object intheinterface.
The i nportant aspect of this patternis that it |ets decorators appear anywhere
a Vi sual Component can. That way clients generallycan't tell thedifference between
a decorated conponent and an undecorated one, and so they don't depend at all

on the decoration.

YApplicability
Use Decor at or

to add responsibilities to individual objects dynamcally and
transparently, that is, wthout affecting other objects.

for responsibilities that can be w t hdrawn.

when ext ensi on by subclassing is inpractical. Sonmetines a |l arge nunber of
i ndependent extensions are possible and woul d produce an expl osi on of
subcl asses t o support every conbi nati on. O acl ass definition nmay be hi dden

or otherw se unavail abl e for subcl assi ng.
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¥YStructure

Componemnt -

Operation{)

A

component
ConcreteComponent Decorator
Operation() Operation() O-f--==-==-=—==-====----—---4 componant-=Cparation()
ConcreteDecoratorA ConcreteDecoratorB

. foee Decorator::Opearationd); =
Operation() Operalion{) ©------7------1 AddedBehavior():
AddedBehavior)

addedState

YParticipants

Component (Vi sual Conponent)
0 defines the interface for objects that can have responsibilities
added to them dynam cal ly.

Concr et eConponent ( Text Vi ew)
0 defines an object to which additional responsibilities can be

att ached.

Decor at or
0 maintains areferenceto a Conponent object and defines aninterface

that conforms to Conponent's interface.

Concr et eDecor at or (Border Decorat or, Scroll Decorator)
O adds responsibilities to the conponent.

¥YCol | aborati ons

Decorator forwards requests to its Conponent object. It may optionally
perform addi ti onal operations before and after forwardi ng the request.

¥Consequences

The Decorator pattern has at |east two key benefits and two liabilities:
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More flexibility than static i nheritance. The Decorator pattern provides
anore flexiblewy toadd responsibilitiesto objects than can be hadwith
static (multiple) inheritance. Wth decorators, responsibilities can be
added and renoved at run-tine sinply by attachi ng and detaching them In
contrast, inheritance requires creating a new cl ass for each additional
responsibility (e.g., BorderedScroll abl eText Vi ew, BorderedText Vi ew).
This gives rise to many cl asses and i ncreases the conplexity of a system
Furthernmore, providing different Decorator classes for a specific

Conponent class lets you mx and match responsibilities.

Decorators al so nmeke it easy to add a property tw ce. For exanple, to give
a Text Vi ewa doubl e border, sinply attach two BorderDecorators. | nheriting

froma Border class twice is error-prone at best.

Avoi ds feature-laden classes high up in the hierarchy. Decorator offers
a pay- as-you-go approach to addi ng responsibilities. Instead of tryingto
support all foreseeabl e features in a conpl ex, custom zabl e cl ass, you can
define a sinple class and add functionality incrementally w th Decorator
obj ects. Functionality can be conposed fromsinple pieces. As a result,
an application needn't pay for features it doesn't use. It's also easy to
define new ki nds of Decorators i ndependently fromthe cl asses of objects
t hey ext end, even f or unf or eseen ext ensi ons. Ext endi ng a conpl ex cl ass t ends
to expose details unrelated to the responsibilities you're adding.

A decorator and its conponent aren't identical. A decorator acts as a
transparent enclosure. But from an object identity point of view, a
decorated conponent is not identical to the conponent itself. Hence you
shouldn't rely on object identity when you use decorators.

Lotsof littleobjects. Adesignthat uses Decorator oftenresultsinsystens
conposed of lots of little objects that all |ook alike. The objects differ
only inthe way they are interconnected, not intheir class or inthe val ue
of their variables. Al though these systens are easy to custom ze by those

who understand them they can be hard to | earn and debug.

Y| npl enent ati on

Sever al

1.

i ssues shoul d be considered when appl ying the Decorator pattern:

Interface conformance. A decorator object's interface nust conformto the
interface of the component it decorates. ConcreteDecorator classes nust
therefore inherit froma conmon class (at least in C++).

Orittingthe abstract Decorator class. There's noneedto defineanabstract
Decor at or cl ass when you only need to add one responsibility. That's often

the case when you' re dealing with an exi sting class hierarchy rather than
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desi gni ng a newone. I nthat case, you can nerge Decorator's responsibility
for forwarding requests to the conponent into the ConcreteDecorator.
Keepi ng Conponent cl asses |ightweight. To ensure a conform ng i nterface,
component s and decor at ors nust descend froma comobn Conponent cl ass. It's
i mportant to keep this common class |ightweight; that is, it should focus
on defining an interface, not on storing data. The definition of the data
representati on shoul d be deferred to subcl asses; otherw se the conpl exity
of the Conponent class m ght nmake the decorators too heavywei ght to use
inquantity. Putting alot of functionality into Component al so i ncreases
the probability that concrete subclasses will pay for features they don't
need.

Changi ng the skin of an object versus changing its guts. W can think of
a decorator as a skin over an object that changes its behavior. An
alternative is to change the object's guts. The Strategy (349) patternis

a good exanple of a pattern for changing the guts.

Strategies are a better choice in situations where the Conponent class is
intrinsically heavyweight, thereby maki ngthe Decorator patterntoocostly
to apply. In the Strategy pattern, the conponent forwards sonme of its

behavi or to a separate strategy object. The Strategy patternlets us alter

or extend the component's functionality by replacing the strategy object.

For exanpl e, we can support di fferent border styl es by havi ng t he conponent
defer border-drawing to a separate Border object. The Border object is a
Strat egy obj ect that encapsul ates a border-draw ng strategy. By extendi ng
the nunber of strategies fromjust one to an open-ended |ist, we achieve

the sane effect as nesting decorators recursively.

In MacApp 3.0 [App89] and Bedrock [SynP3a], for exanple, graphical
conponents (called "views") naintain alist of "adorner" objects that can
attach additional adornnents |ike borders to a view conponent. If a view
has any adorners attached, then it gives thema chance to draw additi onal
enbel | i shments. MacApp and Bedrock nust use t hi s approach because t he Vi ew
class i s heavywei ght. It woul d be t oo expensive to use a full-fledged View

just to add a border.

Since the Decorator pattern only changes a conmponent fromthe outside, the
conponent doesn't have to know anyt hi ng about its decorators; that is, the

decorators are transparent to t he conponent :
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The Strategy-based approach m ght require nodifying the component to

acconmopdat e new ext ensi ons. On the ot her hand, a strategy can have its own
speci alizedinterface, whereas adecorator's interface nust conformtothe
component's. A strategy for rendering a border, for exanple, need only
define the interface for rendering a border (DrawBorder, GetWdth, etc.),
whi ch neans t hat the strategy can be | i ght wei ght evenif t he Conmponent cl ass

i s heavywei ght.

MacApp and Bedrock use this approach for nore than just adorning views.
They al so use it to augnent the event - handl i ng behavi or of objects. Inboth
systens, aviewnaintains alist of "behavior" objects that can nodi fy and
i ntercept events. The vi ew gi ves each of the registered behavi or objects
a chance to handl e the event before nonregistered behaviors, effectively
overriding them You can decorate a view with special keyboard-handling
support, for exanpl e, by regi stering a behavi or object that intercepts and

handl es key events.

¥Sanpl e Code

The fol Il owi ng code shows howto i npl ement user interface decorators in C++. W'

assune there's a Conponent class called Vi sual Conponent.

cl ass Vi sual Conponent {
public:
Vi sual Conponent () ;
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virtual void Draw();
virtual void Resize();

11
}

We define a subcl ass of Visual Conponent cal |l ed Decorator, which we'll subcl ass

to obtain different decorations.

class Decorator : public Visual Conponent {
public:
Decor at or ( Vi sual Conponent *) ;

virtual void Draw();
virtual void Resize();
11
private:
Vi sual Conponent* _conponent ;

}

Decor at or decorates the Visual Conponent referenced by the _component instance
variable, which is initialized in the constructor. For each operation in
Vi sual Conmponent's interface, Decorator defines a default inplenmentation that

passes the request on to _conponent:

voi d Decorator::Draw () {

_conponent - >Draw() ;

voi d Decorator::Resize () {

_conponent - >Resi ze();

Subcl asses of Decorator define specific decorations. For exanple, the class
Bor der Decorat or adds a border to its enclosing conponent. BorderDecorator is a
subcl ass of Decorator that overrides the Draw operation to draw the border.
Bor der Decor at or al so defi nes a private DrawBor der hel per operation that does t he

drawi ng. The subcl assinheritsall other operationinpl enentations frombDecorator.

cl ass BorderDecorator : public Decorator {
public:
Bor der Decor at or (Vi sual Conponent*, int borderWdth);
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virtual void Draw();
private:

voi d DrawBorder (int);
private:

int _width;
h

voi d BorderDecorator::Draw () {
Decorator::Draw();
Dr awBor der (_wi dt h) ;

Asimlar inplementati onwouldfollowfor Scrol | Decorat or and Dr opShadowDecor at or,

whi ch woul d add scrolling and drop shadow capabilities to a visual conponent.
Now we can conpose instances of these cl asses to provide different decorations.
The follow ng code illustrates how we can use decorators to create a bordered
scrol | abl e Text Vi ew.

First, we need a way to put a vi sual conponent into a wi ndow obj ect. W'l| assune

our W ndow cl ass provides a Set Contents operation for this purpose:

voi d W ndow: : Set Contents (Visual Conponent* contents) {
11

Now we can create the text view and a window to put it in:

W ndow* wi ndow = new W ndow,

Text Vi ew* textView = new Text Vi ew,

TextView is a Visual Conponent, which lets us put it into the w ndow

wi ndow >Set Cont ent s(t ext Vi ew) ;

But we want a bordered and scrollable TextView So we decorate it accordingly

before putting it in the w ndow.

wi ndow >Set Cont ent s(

new Bor der Decor at or (
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new Scrol | Decorator(textView), 1

)

Because W ndow accesses its contents through t he Vi sual Conponent interface, it's
unawar e of the decorator's presence. You, as the client, can still keep track
of the text viewif you have to interact withit directly, for exanple, when you
need to i nvoke operations that aren't part of the Visual Conponent interface.

Clients that rely onthe conmponent's identity shouldrefer toit directly as well.

¥YKnown Uses

Many object-oriented user interface toolkits use decorators to add graphi cal
enbel | i shments to widgets. Exanples include InterViews [LVC98, LClI+92], ET++
[WawB8], and the ObjectWrks\Smalltalk class library [Par90]. Mre exotic
applications of Decorator are the Debuggi ngd yph fromInterViews and the
Passi vi t yW apper fromParcPl ace Snal | t al k. A Debuggi ngd yph prints out debuggi ng
informati on before and after it forwards a | ayout request to its conmponent. This
trace informati on can be used to anal yze and debug t he | ayout behavi or of objects
in a conplex conposition. The PassivityWapper can enabl e or disable user

interactions with the conponent.

But the Decorator pattern is by no neans linmted to graphical user interfaces,

as t hefol | owi ng exanpl e (based onthe ET++ streami ngcl asses [WGVB8]) il lustrates.

Streans are a fundanental abstractioninnost |/Ofacilities. Astreamcan provide
an interface for converting objects into a sequence of bytes or characters. That
lets us transcribe an object to a file or to a string in nmenory for retrieval
later. A straightforward way to do this is to define an abstract Stream cl ass
wi th subcl asses MenoryStreamand Fil eStream But suppose we al so want to be able

to do the follow ng:

Compress the stream data using different conpression al gorithms
(run-1ength encodi ng, Lenpel-Ziv, etc.).

Reduce the streamdata to 7-bit ASCI| characters so that it can be
transmtted over an ASCI| conmunication channel .

The Decorator pattern gives us an el egant way to add these responsibilities to

streans. The di agram bel ow shows one solution to the problem
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The Stream abstract class naintains an internal buffer and provides operations
for storing dataontothe stream(Putlnt, PutString). Wenever the buffer isfull,
Streamcal I s t he abstract operation Handl eBuf ferFull, whi ch does the actual data
transfer. The Fil eStreamversion of this operation overrides this operation to

transfer the buffer to a file.

The key cl ass here i s StreanDecorator, which naintains areference to a conponent
stream and forwards requests to it. StreanDecorator subclasses override
Handl eBuf f er Ful | and per for maddi ti onal actions before calling StreanDecorator's

Handl eBuf f er Ful | operati on.

For exanpl e, the ConpressingStream subcl ass conpresses the data, and the
ASCI | 7St reamconverts the datainto 7-bit ASCII. Now, to create a Fil eStreamt hat
conpresses its data and converts the conpressed binary data to 7-bit ASC |, we

decorate a FileStreamw th a ConpressingStream and an ASCl | 7St ream

Streant aStream = new Conpressi ngSt r ean(
new ASCI | 7St r ean(
new Fil eStrean("aFil eNane")

)i
aSt ream >Put I nt (12);

aStream >Put String("aString");

YRel ated Patterns

Adapt er (157): A decorator is different froman adapter in that a decorator only
changes an object's responsibilities, not its interface; an adapter will give

an object a conpletely new interface.
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Conposite (183): A decorator can be viewed as a degenerate conposite with only
one conponent. However, a decorator adds additional responsibilities—it isn't

i ntended for object aggregation.

Strategy (349): A decorator |lets you change the skin of an object; a strategy

| ets you change the guts. These are two alternative ways of changi ng an obj ect.
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Facade

¥ ntent

Provide aunifiedinterface to a set of interfaces in a subsystem Facade defines

a higher-level interface that makes the subsystem easier to use.

YMoti vati on

Structuring a systeminto subsystens hel ps reduce conplexity. A conmon design
goal is to mnimze the conmunication and dependenci es bet ween subsystens. One
way to achieve this goal is to introduce a facade object that provides a single,

simplified interface to the nore general facilities of a subsystem

client classes

Facade

subsyslem classes

Consi der for exanple a progranm ng environnment that gives applications access
toitsconpiler subsystem This subsystemcont ai ns cl asses such as Scanner, Parser,
Pr ogr amNode, Byt ecodeStream and ProgramNodeBui | der t hat i npl enent t he conpil er.
Some specialized applications nmght need to access these classes directly. But
nmost clients of a conpiler generally don't care about details |ike parsing and
code generation; they nmerely want to conpile sone code. For them the powerful

but lowlevel interfaces in the conpiler subsystemonly conplicate their task.

To provide a higher-level interface that can shield clients fromthese cl asses,
t he conpi | er subsystemal soincl udes a Conpi |l er cl ass. This cl ass defines aunified
interface to the conpiler's functionality. The Conpiler class acts as a facade:
It offers clients asingle, sinpleinterface to the conpiler subsystem It glues
together the classes that inplenent conpiler functionality w thout hiding them
compl etely. The conpil er facade nakes |ife easier for nobst progranmers without

hiding the | ower-level functionality fromthe few that need it.
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YApplicability

Use the Facade pattern when

you want to provide a sinple interface to a conpl ex subsystem Subsystens
of ten get nore conpl ex as t hey evol ve. Most patterns, when applied, result
in nmore and snal | er classes. This nmakes the subsystem nore reusabl e and
easier to custom ze, but it also beconmes harder to use for clients that
don't need to custom ze it. A facade can provide a sinple default view of
the subsystemthat is good enough for nost clients. Only clients needing
nmore custom zability will need to | ook beyond the facade.

t her e are many dependenci es between clients and t he i npl enentati on cl asses
of an abstraction. Introduce afacadeto decoupl ethe subsystemfromclients
and ot her subsystems, thereby pronoting subsystem i ndependence and
portability.

you want to |l ayer your subsystens. Use a facade to define an entry point
t o each subsysteml evel . | f subsystens are dependent, then you can sinplify
t he dependenci es between t hem by meki ng t hem conmuni cate with each ot her

solely through their facades.
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¥YStructure

Facade

YPartici pants

Facade (Conpiler)

0 knows whi ch subsystem cl asses are responsi ble for a request.

0 delegates client requests to appropriate subsystem objects.
subsystem cl asses (Scanner, Parser, ProgranmNode, etc.)

0 inplement subsystem functionality.

0 handl e work assigned by the Facade object.

0 have no know edge of the facade; that is, they keep no references

toit.

¥YCol | aborati ons

Clients communi cate wi t hthe subsyst emby sendi ng requests to Facade, which
forwards themto the appropriate subsystem object(s). Although the
subsystemobj ects performthe actual work, the facade nmay have to do wor k
of its own to translate its interface to subsysteminterfaces.

Clients that use the facade don't have to access its subsystem objects
directly.

YConsequences

The Facade pattern offers the follow ng benefits:

1. It shields clients fromsubsystemconponents, thereby reduci ng the nunber
of objects that clients deal with and maki ng the subsystemeasi er to use.
2. It pronptes weak coupling between the subsystemandits clients. Oftenthe
conponents in asubsystemare strongly coupl ed. Weak couplinglets youvary

t he conponent s of t he subsystemwi thout affectingitsclients. Facades hel p
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| ayer a system and the dependenci es between objects. They can elininate
conpl ex or circul ar dependenci es. Thi s can be an i nportant consequence when

the client and the subsystem are inplenented i ndependently.

Reduci ng conpi | ati on dependencies is vital in|arge software systens. You
want tosavetine by m nimnzingreconpilationwhensubsystemcl asses change.
Reduci ng conpi | ati on dependenci es wi th facades canlimt thereconpilation
needed for a small change in an inportant subsystem A facade can al so
simplify porting systens to other platforns, becauseit's less likelythat

bui | di ng one subsystemrequires building all others.

3. It doesn't prevent applications fromusing subsystemcl asses if they need

to. Thus you can choose between ease of use and generality.

Y| npl enent ati on

Consi der the follow ng issues when inplenenting a facade:

1. Reducing client-subsystemcoupling. The coupling between clients and t he
subsystem can be reduced even further by maki ng Facade an abstract cl ass
wi t h concrete subcl asses for different i npl ement ati ons of a subsystem Then
clients can comunicate with the subsystemthrough the interface of the
abstract Facade class. This abstract coupling keeps clients fromknow ng

whi ch inplementation of a subsystemis used.

An alternativetosubclassingistoconfigureaFacade object withdifferent
subsyst emobj ects. To custom ze the facade, sinply replace one or nore of

its subsystem objects.

2. Publicversus private subsystemcl asses. Asubsystemi s anal ogous to acl ass
in that both have interfaces, and both encapsul ate sonething—a cl ass
encapsul at es st at e and operati ons, whil e a subsyst emencapsul at es cl asses.
And just as it's useful to think of the public and private interface of

a class, we can think of the public and private interface of a subsystem

The public interface to a subsystemconsi sts of classes that all clients
can access; the private interface is just for subsystem extenders. The
Facade class is part of the public interface, of course, but it's not the
only part. Gt her subsystemcl asses are usual |y public as well. For exanpl e,
the cl asses Parser and Scanner in the conpiler subsystemare part of the

public interface.

Maki ng subsystemcl asses private woul d be useful, but fewobject-oriented

| anguages support it. Both C++and Snal I tal k traditi onal |y have had a gl obal
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narme space for classes. Recently, however, the C++ standardization
conm ttee added nane spaces to the |anguage [Str94], which will let you

expose just the public subsystem cl asses.

¥Sanpl e Code

Let's take a closer ook at how to put a facade on a conpil er subsystem

The conpi | er subsystemdefines a {BytecodeStreant class that i npl enents a stream
of Bytecode obj ects. ABytecode obj ect encapsul ates a byt ecode, whi ch can specify
machi ne instructions. The subsystemal so defi nes a Token cl ass for objects that

encapsul ate tokens in the programm ng | anguage.

The Scanner cl ass takes a streamof characters and produces a streamof tokens,

one token at a tine.

class Scanner {
public:
Scanner (i strean®) ;

virtual ~Scanner();

virtual Token& Scan();
private:

i stream& _i nput Stream
b

The cl ass Parser uses a ProgranmNodeBuil der to construct a parse tree froma

Scanner's tokens.

class Parser {
public:
Parser();

virtual ~Parser();

virtual void Parse(Scanner&, ProgramNodeBuil der&);
b

Parser calls back on ProgramNodeBuil der to build the parse tree increnentally.

These cl asses interact according to the Builder (110) pattern.

cl ass PrograniNodeBui | der {
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public:
Pr ogr anNodeBui | der () ;

virtual ProgranNode* Newvari abl e(
const char* vari abl eNane

) const;

virtual ProgranmNode* NewAssi gnnent (
ProgranNode* vari abl e, ProgranmNode* expression

) const;

virtual ProgranmNode* NewRet urnStat ement (
Pr ogr anNode* val ue

) const;

virtual ProgranmNode* NewCondition(

ProgramNode* condition,

ProgramNode* truePart, ProgranNode* fal sePart
) const;

11

Pr ogr anNode* Cet Root Node() ;
private:

Progr amNode* _node;
}s

The parse tree is nmade up of instances of ProgramNode subcl asses such as

St at ement Node, Expressi onNode, and so forth. The ProgramNode hierarchy is an

exanpl e of the Conposite (183) pattern. ProgramNode defines an interface for

mani pul ating the program node and its children, if any.

cl ass ProgramNode {
public:
/1 program node nani pul ation
virtual void GetSourcePosition(int& line, int& index);

11

/1 child mani pul ation

virtual void Add(PrograniNode*);
virtual void Renpve(ProgranNode*);
/1

virtual void Traverse(CodeCGeneratorg&);
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pr ot ect ed:
Pr ogr anNode() ;
b

The Traverse operation takes a CodeGenerator object. ProgranNode subcl asses use
this object to generate machine code in the form of Bytecode objects on a

Byt ecodeStream The cl ass CodeCenerator is a visitor (see Visitor (366)).

cl ass CodeCenerator {

public:
virtual void Visit(StatenentNode*);
virtual void Visit(ExpressionNode*);
11

prot ect ed:
CodeCGener at or ( Byt ecodeSt rean®) ;

pr ot ect ed:
Byt ecodeSt r ean& _out put ;

b

CodeGener at or has subcl asses, for exanple, StackMachi neCodeCGenerator and
Rl SCCodeGener at or, that generate machi ne code for different hardware

architectures.

Each subcl ass of ProgramNode i npl ements Traverse to call Traverse on its child
Progr amNode objects. In turn, each child does the same for its children, and so

on recursively. For exanple, ExpressionNode defines Traverse as follows:

voi d Expressi onNode: : Traverse (CodeCenerator& cg) {
cg.Visit(this);

Listlterator i(_children);

for (i.First(); !'i.lsDone(); i.Next()) {
i.Currentlten()->Traverse(cg);

The cl asses we' ve discussed so far nake up the conpiler subsystem Now we'll
i ntroduce a Conpi |l er cl ass, afacade that puts all these pi eces together. Conpiler

provides a sinple interface for conpiling source and generating code for a
particul ar machi ne.
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cl ass Conpiler {
public:
Conpi ler();

virtual void Conpile(istreanm& BytecodeStreang);
h

voi d Conpiler::Conpile (

i stream& i nput, BytecodeStream& out put
) |

Scanner scanner (i nput);

Pr ogr anNodeBui | der bui | der;

Par ser parser;

par ser. Parse(scanner, builder);

Rl SCCodeCGener at or gener at or (out put);
ProgranNode* parseTree = buil der. Get Root Node() ;

parseTree- >Traver se(generator);

Thi s inpl ementation hard-codes the type of code generator to use so that

programmers aren't required to specify the target architecture. That night be
reasonable if there's only ever one target architecture. If that's not the case,
then we mght want to change the Conpiler constructor to take a CodeGenerat or
par amet er. Then progranmers can speci fy t he generator to use whentheyinstantiate
Compi |l er. The conpi |l er facade can paraneteri ze other partici pants such as Scanner
and Progr amNodeBui | der as wel |, which adds flexibility, but it also detracts from
the Facade pattern's mission, whichis tosinplify the interface for the comon

case.

¥YKnown Uses

The conpiler exanple in the Sanple Code section was inspired by the
bj ect Wrks\ Smal I tal k conpil er system [ Par90].

In the ET++ application franework [WGVB8], an application can have built-in
browsing tools for inspecting its objects at run-tine. These browsing tools are
implenmented in a separate subsystemthat includes a Facade class call ed
"Progranmm ngEnvironnent." This facade defines operations such as | nspect bj ect

and | nspectCl ass for accessing the browsers.
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An ET++ application can also forgo built-in browsing support. In that case,

Pr ogr anm ngEnvi ronnment i npl enments these requests as null operations; that is,
they do nothing. Only the ETProgranm ngEnvironnment subclass inplenents these

requests wi th operations that di splaythe correspondi ng browsers. The application
has no know edge of whether a browsing environment is available or not; there's

abstract coupling between the application and the browsing subsystem

The Choi ces operating system [Cl R3] uses facades to conpose many franewor ks
into one. The key abstractions in Choices are processes, storage, and address
spaces. For each of these abstractions there is a correspondi ng subsystem

i mpl enent ed as a f ramewor k, t hat supports porting Choicestoavariety of different
har dwar e pl at f orns. Two of t hese subsyst ens have a "representative" (i.e., facade).

These representatives are FileSystenl nterface (storage) and Donain (address

spaces).
Process Domain
Acdd{Memaory, Addrass)
—=A Remove(Memaory)

Protect{Memory, Protection)
RepairFauit()

AddressTranslation MemoryObject

FindMemory{Address) BuildCache() ™ MemoryObjectCache

TwolevelPageTable PersistentStora PagediemoryObjectCache
File Disk

For exanple, the virtual nenory framework has Domain as its facade. A Domain

represents an address space. It provides a nappi ng between virtual addresses and
of fsetsintomenory objects, files, or backi ng store. The mai n operati ons on Donai n
support addi ng a menory obj ect at a particul ar address, renovi ng a nenory obj ect,

and handling a page fault.

As t he preceding di agramshows, the virtual nmenory subsystemuses the foll ow ng

conponents internally:

MenoryQhj ect represents a data store.
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Menor yQhj ect Cache caches the data of MenoryObjects in physical nenory.
Menor yObj ect Cache is actually a Strategy (349) that | ocalizes the caching
policy.

Addr essTransl ati on encapsul ates the address translation hardware.

The RepairFault operation is called whenever a page fault interrupt occurs. The
Domai n finds the nenory object at the address causing the fault and del egates
the RepairFaul t operationtothe cache associ ated withthat menory obj ect. Domai ns

can be custom zed by changing their conponents.

YRel ated Patterns

Abstract Factory (99) can be used with Facade to provi de aninterface for creating
subsystemobjects in a subsystemindependent way. Abstract Factory can al so be

used as an alternative to Facade to hide platformspecific classes.

Medi ator (305) issimlar toFacadeinthat it abstracts functionality of existing
cl asses. However, Mediator's purpose is to abstract arbitrary communi cation

bet ween col | eague obj ects, often centralizing functionality that doesn't bel ong
in any one of them A nmediator's colleagues are aware of and communi cate with
the nedi ator instead of conmunicating with each other directly. In contrast, a
facade nmerely abstracts the interface to subsystemobjects to nake them easi er
to use; it doesn't define new functionality, and subsystem classes don't know

about it.

Usual Iy only one Facade object is required. Thus Facade objects are often
Si ngl etons (144).
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Fl ywei ght

¥ ntent

Use sharing to support |arge nunbers of fine-grained objects efficiently.

YMoti vati on

Sone applications could benefit fromusing obj ects throughout their design, but

a nai ve inplenentation would be prohibitively expensive.

For exanpl e, nost docunent editor i npl enentati ons have text formatting and editing
facilities that are nodul ari zed to sone extent. Object-oriented docunent editors
typically use objects to represent enbedded el ements |ike tables and figures.
However, they usually stop short of using an object for each character in the
docunent, even though doing so would pronote flexibility at the finest |evels
in the application. Characters and enbedded el ements could then be treated
uniformy with respect to howthey are drawn and fornmatted. The application could
be ext ended t o support newcharacter sets wi thout di sturbing other functionality.
The appl i cation's object structure could m m cthe docunent's physical structure.
The foll owi ng di agram shows how a docurment edi tor can use objects to represent
characters.

e
I ==
== e
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h e - = character
‘\I\ b - objects

H\H (
N s

row
objects

B

column
ki3 object

-
L 1] ]

The dr awback of suchadesignisitscost. Evennoderate-sized docunents nay require
hundreds of thousands of character objects, which will consune |ots of nmenory
and may i ncur unacceptable run-tine overhead. The Fl ywei ght pattern describes
howto share objects to allowtheir use at fine granularities without prohibitive
cost .
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Aflyweight i s asharedobject that canbeusedinnultiplecontexts simultaneously.
The f1 ywei ght acts as an i ndependent obj ect i n each context—it's indistinguishable
froman instance of the object that's not shared. Flyweights cannot make

assunpti ons about the context in which they operate. The key concept here is the
di stinction between intrinsic and extrinsic state. Intrinsic state is stored in
the flyweight; it consists of information that's independent of the flyweight's
context, thereby making it sharable. Extrinsic state depends on and varies with
the flyweight's context and therefore can't be shared. Cient objects are

responsible for passing extrinsic state to the flyweight when it needs it.

Fl ywei ght s nodel concepts or entitiesthat arenornallytooplentiful torepresent
wi t h obj ects. For exanpl e, a docunent editor cancreate afl yweight for eachletter
of the al phabet. Each flyweight stores a character code, but its coordinate

position in the docunent and its typographic style can be determ ned fromthe
text |l ayout algorithnms and formatti ng commands i n effect wherever the character
appears. The character code is intrinsic state, while the other information is

extrinsic.

Logically there is an object for every occurrence of a given character in the

docunent :

Physi cal | y, however, there is one shared flywei ght object per character, and it
appears in different contexts in the docunent structure. Each occurrence of a
particul ar character object refers to the same instance in the shared pool of

fl ywei ght objects:
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flyweight pool

The cl ass structure for these objects is shown next. dyph is the abstract cl ass
for graphi cal objects, sonme of which may be fl ywei ghts. Operations that may depend
on extrinsic state have it passed to themas a paraneter. For exanple, Draw and

Intersects nmust know which context the glyphis in before they can do their job.

ma| Glyph -

DrawiContext)
Infersects{Paoint. Contexl)

A

—_ Row Character Column [
childran children
Draw(Contaxt) Diraw{Context) Draw{Contaxt)
Intersects{Point, Contaxt) Intersects{Point, Context) Intersects| Point, Context)
char ¢

A flyweight representing the letter "a" only stores the correspondi ng character
code; it doesn't need to store its location or font. Cients supply the

cont ext - dependent i nformati onthat the fl ywei ght needstodrawitsel f. For exanpl e,
a Row gl yph knows where its chil dren shoul d drawt hensel ves so that they are til ed

hori zontally. Thus it can pass each child its location in the draw request.

Because t he nunber of different character objects is far |ess than the nunber
of characters in the docunent, the total nunber of objects is substantially |ess
than what a naive inplenentation would use. A docunent in which all characters
appear in the sanme font and color will allocate on the order of 100 character
obj ects (roughly the size of the ASCI| character set) regardl ess of the docunment's
| ength. And since nost docunents use no nore than 10 different font-color
combi nati ons, this nunmber won't grow appreciably in practice. An object

abstraction thus becones practical for individual characters.

220



Desi gn Patterns:

El enents of Reusabl e Object-Oriented Software

¥ Appl i cabi

lity

The Fl ywei ght pattern's effecti veness depends heavily on howand where it's used.

Apply the Flyweight pattern when all

An application uses a |arge nunber of objects.

of the followi ng are true:

Storage costs are high because of the sheer quantity of objects.

Most obj ect state can be nade extrinsic.

Many groups of objects nay be replaced by relatively few shared objects
once extrinsic state is renoved.

The application doesn't depend on obj ect identity. Since flyweight objects

may be shared,

obj ect s.

¥YStructure

FlyweightFactory

fyweights
ko

identity tests will

return true for conceptual ly distinct

GetFiyweightikey) ¢

..J Flyweight

OperglionjextrinsicSiate)

jelse |

if (fhyweight[key] exists) {
refurn existing flyweight;

create new fyweight:
add it to pool of fiyweights;
retum the new fiyweight;

T

Client

ConcreteFlyweight

UnsharedConcreteFlyweight

Operation]extrinsicState)

Operation(extrinsicSiate)

intrinsicState

allState

The foll ow ng object diagram shows how flywei ghts are shared:
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YParticipants

Fl ywei ght

(o]

decl ares an i nterface t hrough which flywei ghts can recei ve and act
on extrinsic state.

Concr et eFl ywei ght (Character)

(o]

i mpl enents the Flywei ght interface and adds storage for intrinsic
state, i f any. AConcreteFl ywei ght obj ect nust be sharabl e. Any state
it stores nust beintrinsic; that is, it nust be i ndependent of the

Concr et eFl ywei ght obj ect's context.

Unshar edConcr et eFl ywei ght (Row, Col um)

(o]

not all Flyweight subclasses need to be shared. The Flywei ght
interface enables sharing; it doesn't enforce it. It's conmon for
Unshar edConcr et eFl ywei ght obj ects to have Concret eFl ywei ght

obj ects as children at sone | evel in the flywei ght object structure

(as the Row and Col um cl asses have).

Fl ywei ght Fact ory

(o]
(o]

dient

creates and nanages flywei ght objects.

ensures that flyweights are shared properly. Wen a client requests
a flyweight, the FlyweightFactory object supplies an existing
instance or creates one, if none exists.

mai ntains a reference to flyweight(s).

computes or stores the extrinsic state of flyweight(s).

¥YCol | aborati ons

State that a flyweight needs to function nust be characterized as either
intrinsicor extrinsic. Intrinsicstateis storedinthe ConcreteFlyweight
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object; extrinsic state is stored or conputed by Client objects. Clients
pass this state to the flywei ght when they invoke its operations.

Clients shoul d not instantiate ConcreteFlyweights directly. dients nust
obtai n Concr et eFl ywei ght obj ects exclusively fromthe Flywei ghtFactory

object to ensure they are shared properly.

¥Consequences

Fl ywei ghts may i ntroduce run-time costs associ ated with transferring, finding,
and/ or conputingextrinsicstate, especiallyifitwasformerlystoredasintrinsic
state. However, such costs are offset by space savings, which increase as nore

flyweights are shared.

St orage savings are a function of several factors:

the reduction in the total nunber of instances that comes from sharing
the amount of intrinsic state per object

whet her extrinsic state is conputed or stored.

The nmore flyweights are shared, the greater the storage savings. The savings

increase with the anount of shared state. The greatest savings occur when the
obj ects use substantial quantities of both intrinsic and extrinsic state, and
the extrinsic state can be conputed rather than stored. Then you save on storage
intw ways: Sharing reduces the cost of intrinsic state, and you trade extrinsic

state for conputation tine.

The Fl ywei ght pattern is often conbined with the Conposite (183) pattern to

represent a hi erarchical structure as agraphw thshared| eaf nodes. Aconsequence
of sharing is that flyweight | eaf nodes cannot store a pointer to their parent.
Rat her, the parent pointer is passed to the flyweight as part of its extrinsic
state. This has a major inpact on how the objects in the hierarchy conmuni cate

wi th each other.

Y| npl enent ati on

Consi der the followi ng issues when inplenmenting the Flywei ght pattern:

1. Renobving extrinsic state. The pattern's applicability is determ ned
|largely by howeasy it is toidentify extrinsic state and renove it from
shared obj ects. Renmpving extrinsic state won't hel p reduce storage costs
if thereare as many di fferent kinds of extrinsic state as there are obj ects
before sharing. ldeally, extrinsic state can be conputed froma separate

object structure, one with far smaller storage requirenments.

223



Design Patterns: Elenents of Reusable Object-Oriented Software

In our docunent editor, for exanple, we can store a map of typographic
information in a separate structure rather than store the font and type
styl e wi th each character object. The nap keeps track of runs of characters
with the sane typographic attributes. Wen a character draws itself, it
recei ves its typographic attributes as aside-effect of thedrawtraversal.
Because docunents nornmally use just a few different fonts and styles,

storing this informati on externally to each character object is far nore

efficient than storing it internally.

2. Managi ng shared objects. Because objects are shared, clients shouldn't
instantiate themdirectly. FlyweightFactory lets clients locate a
particular flyweight. FlyweightFactory objects often use an associative
store to let clients I ook up flyweights of interest. For exanple, the
flyweight factory in the document editor exanple can keep a table of
flywei ghts i ndexed by character codes. The manager returns the proper
flyweight given its code, creating the flyweight if it does not already

exi st.

Sharability also inplies some formof reference counting or garbage

collection to reclaima flyweight's storage when it's no | onger needed.
However, neither i s necessary if the number of flyweightsis fixedandsnall
(e.g., flyweights for the ASCl| character set). Inthat case, theflyweights

are worth keeping around permanently.

¥Sanpl e Code

Returning to our docunent formatter exanple, we can define a dyph base class
for flywei ght graphical objects. Logically, glyphs are Conposites (see Conposite
(183)) that have graphical attributes and can draw thensel ves. Here we focus on
just the font attribute, but the same approach can be used for any ot her graphi cal

attributes a glyph mght have.

class dyph {
public:
virtual ~dyph();

virtual void Draw( Wndow*, d yphContext&);

virtual void SetFont(Font*, d yphContextg&);
virtual Font* GetFont(d yphContext&);

virtual void First(d yphContext&);
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virtual void Next(d yphContext&);
virtual bool |sDone(d yphContext&);
virtual dyph* Current(d yphContext&);

virtual void Insert(dyph*, dyphContextg&);
virtual void Renpve(d yphContext&);

prot ect ed:
G yph();

b

The Character subclass just stores a character code:

class Character : public dyph {
public:

Character(char);

virtual void Draw( Wndow*, d yphContext&);
private:

char _charcode;

}s

To keep fromall ocating space for a font attribute in every glyph, we'll store
the attribute extrinsically in a G yphContext object. dyphContext acts as a
repository of extrinsic state. It naintains a conpact mappi ng between a gl yph
and its font (and any other graphical attributes it might have) in different

contexts. Any operation that needs to know the glyph's font in a given context
wi Il have a G yphCont ext instance passed to it as a paraneter. The operation can
then query the dyphContext for the font in that context. The context depends
on the glyph's locationinthe gl yph structure. Therefore Ayph'schilditeration

and nani pul ati on operations nmust update the G yphCont ext whenever they're used.

class d yphContext {
public:

d yphCont ext () ;

virtual ~Q yphContext();

virtual void Next(int step = 1);

virtual void Insert(int quantity = 1);

virtual Font* GetFont();
virtual void SetFont(Font*, int span = 1);

private:
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int _index;
BTree* _fonts;

b

d yphCont ext nust be kept i nforned of the current positionin the glyph structure
duringtraversal. G yphContext::Next i ncrements _i ndex as thetraversal proceeds.
d yph subcl asses that have children (e.g., Row and Col um) nmust inplement Next

so that it calls G yphContext::Next at each point in the traversal.

A yphCont ext : : Get Font uses the i ndex as a key into a BTree structure that stores
the gl yph-to-font napping. Each node in the tree is | abeled with the | ength of
the string for which it gives font information. Leaves in the tree point to a

font, while interior nodes break the string into substrings, one for each child.

Consi der the followi ng excerpt froma glyph conposition:
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The BTree structure for font information mght |ook |ike
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Times 24 Times-ltalic 12 Times 12 Time-Bold 12 Courier 24

Interior nodes define ranges of glyph indices. BTree is updated in response to
font changes and whenever gl yphs are added to or renpved fromthe gl yph structure.
For exanple, assum ng we're at index 102 in the traversal, the follow ng code
sets the font of each character in the word "expect" to that of the surrounding

text (that is, tinesl2, an instance of Font for 12-point Tines Ronan):

d yphCont ext gc;
Font* tinmesl2 = new Font ("Ti nes- Roman-12");
Font* timesltalicl2 = new Font("Tines-ltalic-12");

11

gc. Set Font (tinesl2, 6);

The new BTree structure (w th changes shown in bl ack) |ooks |ike
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Times 12

Suppose we add the word "don't " (including a trailing space) in 12-point Tines
Italic before "expect." The foll owi ng code i nforms the gc of this event, assum ng
it is still at index 102:

gc. I nsert(6);

gc. Set Font (tinesltalicl2, 6);

The BTree structure becones
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Times-Italic 12

When the G yphContext is queried for the font of the current glyph, it descends
the BTree, adding up indices as it goes until it finds the font for the current
i ndex. Because the frequency of font changes is relatively low, the tree stays
smal|l relative to the size of the gl yph structure. This keeps storage costs down

wi thout an inordinate increase in | ook-up time.3

The | ast object we need is a FlyweightFactory that creates glyphs and ensures
they' re shared properly. O ass d yphFactory instanti ates Character and ot her ki nds
of gl yphs. W only shar e Char acter obj ects; conpositeglyphs arefar | ess plentiful,

and their inportant state (i.e., their children) is intrinsic anyway.

const int NCHARCCDES = 128;

class dyphFactory {
public:

d yphFactory();

virtual ~d yphFactory();

virtual Character* CreateCharacter(char);
virtual Row* CreateRow);
virtual Columm* CreateColum();
11
private:

Character* _charact er [ NCHARCODES] ;
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b

The _character array contains pointers to Character glyphs i ndexed by character

code. The array is initialized to zero in the constructor.

G yphFactory:: d yphFactory () {
for (int i = 0; i < NCHARCODES; ++i) ({

_character[i] = 0;

Creat eCharacter | ooks up a character in the character glyph in the array, and
it returns the corresponding glyph if it exists. If it doesn't, then

Creat eCharacter creates the glyph, puts it in the array, and returns it:

Character* d yphFactory:: CreateCharacter (char c) {
if (!_character[c]) {

_character[c] = new Character(c);

return _character[c];

The ot her operations sinply instantiate a new object each tinme they're called,

si nce noncharacter glyphs won't be shared:

Row* d yphFactory:: CreateRow () {

return new Row,

Col um* d yphFactory:: CreateColum () {

return new Col um;

Wecouldonit theseoperationsandlet clientsinstantiateunsharedglyphsdirectly.
However, if we decide to nake these gl yphs sharable |l ater, we'll have to change

client code that creates them
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¥YKnown Uses

The concept of flyweight objects was first described and explored as a design
techniqueinlinterViews 3.0[CL90]. Its devel opers built apowerful docunent editor
cal l ed Doc as a proof of concept [ CL92]. Doc uses gl yph objects to represent each
character i nthe docunent. The edi tor buil ds one d yph i nstance for each character
inaparticular styl e(whichdefinesitsgraphical attributes); henceacharacter's
intrinsicstate consists of the character code andits styleinformation (anindex
into a style table).* That nmeans only position is extrinsic, making Doc fast.
Docunents are represented by a class Docunent, which also acts as the

Fl ywei ght Fact ory. Measur enent s on Doc have shown t hat shari ng fl ywei ght characters
is quite effective. In a typical case, a docurment containing 180,000 characters

required allocation of only 480 character objects.

ET++ [WGMB8] uses flyweights to support |ook-and-feel independence.® The

| ook- and-feel standard affects thelayout of user interfaceel enents (e.g., scroll
bars, buttons, menus—known col | ectivelyas "w dgets") andtheir decorations (e.g.,
shadows, beveling). A w dget delegates all its layout and draw ng behavior to
a separate Layout object. Changi ng the Layout object changes the | ook and feel,

even at run-tine.

For each wi dget cl assthereis acorrespondi ng Layout cl ass (e.g., Scrol | barLayout,
Menubar Layout, etc.). An obvi ous probl emwiththis approachis that usi ng separate
| ayout objects doubles the nunmber of user interface objects: For each user

interface object there is an additional Layout object. To avoid this overhead,
Layout objects are i npl enented as fl ywei ghts. They nake good fl ywei ghts because
they deal nostly with defining behavior, and it's easy to pass themwhat little

extrinsic state they need to lay out or draw an object.

The Layout objects are created and nmanaged by Look objects. The Look class is
an Abstract Factory (99) that retrieves a specific Layout object with operations
i ke GetButtonLayout, GetMenuBarlLayout, and so forth. For each | ook-and-feel

standard there i s a correspondi ng Look subcl ass (e.g., MdtifLook, OpenLook) that

suppl i es the appropriate Layout objects.

By the way, Layout objects are essentially strategi es (see Strategy (349)). They

are an exanple of a strategy object inplenented as a flywei ght.

YRel ated Patterns

The Fl yweight pattern is often conmbined with the Conposite (183) pattern to
i mpl enent alogically hierarchical structureinternms of adirected-acyclic graph

with shared | eaf nodes.
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It's often best toinplenent State (338) and Strategy (349) obj ects as fl ywei ghts.

3Look-up time in this scheme is proportional to the font change frequency.
Wr st - case performance occurs when a font change occurs on every character, but

that's unusual in practice.

“1n the Sanpl e Code given earlier, style information is made extrinsic, |eaving

the character code as the only intrinsic state.

°See Abstract Factory (99) for another approach to | ook-and-feel independence.
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Pr oxy

¥ ntent

Provi de a surrogate or placehol der for another object to control access to it.

YAl so Known As

Surrogate

YMoti vati on

One reason for controlling access to an object is to defer the full cost of its
creationandinitializationuntil we actually need to useit. Consider a docunment
editor that can enbed graphical objects in a docunent. Sone graphical objects,
Iikelargeraster i nages, can be expensi veto create. But openi ng a docunent shoul d
be fast, so we should avoid creating all the expensive objects at once when the
docunent is opened. This isn't necessary anyway, because not all of these objects

will be visible in the docunent at the sane tine.

These constrai nts woul d suggest creating each expensi ve obj ect on demand, which
inthis caseoccurs when an i nmage becones vi si bl e. But what do we put i nthe docunent
in place of the inmage? And how can we hide the fact that the inage is created
on denmand so that we don't conplicate the editor's inplementation? This

optim zation shouldn't inpact the rendering and formatting code, for exanple.

The solution is to use another object, an i mage proxy, that acts as a stand-in
for the real inmage. The proxy acts just like the image and takes care of

instantiating it when it's required.

aTextDocument ]
anlmageProxy
|, image & ” animage
ile

Mame w-----—-F-———- W

data
|

It MEmoy ot oSk

The i mage proxy creates the real image only when the docunent editor asks it to
display itself by invoking its Draw operation. The proxy forwards subsequent
requests directly to the image. It nust therefore keep a reference to the i nage

after creating it.
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Let's assume that inmages are stored in separate files. In this case we can use
thefilenane asthereferencetothereal object. The proxy al sostoresits extent,
that is, its width and height. The extent | ets the proxy respond to requests for

its size fromthe formatter without actually instantiating the image.

The following class diagramillustrates this exanple in nmore detail.

DocumentEditor W
Dirawy]
GetExtenti)
Stare{)
Load()
image I ImageProxy if {image == 0} { T
] image = Loadimage(fileNama);
Draw{) IMage| praw() — O-p-----------1 I age_Dra 0
| — | W
GetExtent() Getbxtent) O-r-——--3 g -
Store() Store() |
et ey I if {image ==10) {
Load(} Load) be—- - return extent:
o . } eise |
imagelmp fileMams return image-=GetExtant]);
axient extent

The docunent editor accesses enmbedded i mages through the interface defined by
the abstract Graphic class. InmageProxy is a class for inmages that are created
on demand. | mageProxy maintains the file nane as areference to the inmge on di sk.

The file nane is passed as an argunent to the |mageProxy constructor.

| mageProxy al so stores the boundi ng box of the i mage and a reference to the real
| mage instance. This reference won't be valid until the proxy instantiates the
real image. The Draw operation nakes sure the inage is instantiated before

forwarding it the request. CGetExtent forwards the request to the inmage only if

it's instantiated; otherw se |ImageProxy returns the extent it stores.

YApplicability

Proxy i s applicabl e whenever thereis aneed for a nore versatil e or sophisticated
reference to an object than a sinple pointer. Here are several common situations

in which the Proxy pattern is applicable:

1. Arenpte proxy provides alocal representative for an object inadifferent
address space. NEXTSTEP [ Add94] uses the class NXProxy for this purpose.
Coplien [Cop92] calls this kind of proxy an "Anbassador."
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2. Avirtual proxy creates expensive objects on denand. The | nageProxy
described in the Mtivation is an exanple of such a proxy.

3. A protection proxy controls access to the original object. Protection
proxi es are useful when objects shoul d have different access rights. For
exanpl e, Kernel Proxies in the Choices operating system[Cl RVM3] provide
protected access to operating system objects.

4. A smart reference is a replacenment for a bare pointer that perforns
addi ti onal actions when an object is accessed. Typical uses include

0 counting the nunber of references to the real object sothat it can
be freed automatical |y whentherearenonorereferences (al socalled
smart pointers [Ede92]).
| oadi ng a persi stent object intonenory whenit's first referenced.
checkingthat thereal object islockedbeforeit's accessedtoensure
that no other object can change it.

YStructure

Subject
Request()
. alSubject
RealSubject realoubjec Proxy
Regquest{) Request)) o-fF--------- realSubject-=Request();
Here's a possible object diagramof a proxy structure at run-time:
! Pt

aClient f——w
aProxy

subject ™ . | aRealSubject w

—I\reaISubjéH;t - ~

YPartici pants

Proxy (I mageProxy)
O nmintains areference that |ets the proxy access the real subject.
Proxy may ref er t o a Subj ect i f t he Real Subj ect and Subj ect i nterfaces

are the sane.
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O provides an interface identical to Subject's so that a proxy can
by substituted for the real subject.

O controls access to the real subject and may be responsible for
creating and deleting it.

O other responsibilities depend on the kind of proxy:

8§ renote proxies are responsible for encoding a request and
its argunments and for sendi ng t he encoded request to the real
subject in a different address space.

§ virtual proxies may cache additional information about the
real subject so that they can postpone accessing it. For
exanpl e, the | nageProxy fromthe Motivation caches the real
i mge's extent.

§ protection proxies check that the caller has the access
perm ssions required to performa request.

Subj ect (G aphic)
0 defines the common interface for Real Subject and Proxy so that a
Proxy can be used anywhere a Real Subj ect is expected.
Real Subj ect (I nage)

0 defines the real object that the proxy represents.

¥YCol | aborati ons

Proxy forwards requests to Real Subject when appropri ate, depending on t he
ki nd of proxy.

¥Consequences

The Proxy pattern introduces a |level of indirection when accessing an object.

The additional indirection has many uses, depending on the kind of proxy:

1. Arenote proxycanhidethefact that anobject residesinadifferent address
space.

2. Avirtual proxy can performoptimzations such as creating an object on
demand.

3. Both protectionproxies andsmart references al |l owaddi ti onal housekeepi ng
tasks when an object is accessed.

There's another optim zation that the Proxy pattern can hide fromthe client.
It's calledcopy-on-wite, andit'srelatedto creationon denand. Copying al arge
and conpl i cat ed obj ect can be an expensi ve operation. | f the copyis never nodified,
then there's no need to incur this cost. By using a proxy to postpone the copyi ng

process, we ensurethat we pay the pri ce of copyingtheobject onlyifit'snodified.
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To make copy-on-wite work, the subject nust be reference counted. Copying the
proxy will do nothing nore than increnent this reference count. Only when the
client requests an operation that nodifies the subject does the proxy actually
copy it. Inthat case the proxy nust al so decrenent the subject's reference count.

When the reference count goes to zero, the subject gets del eted.

Copy-on-write can reduce t he cost of copyi ng heavywei ght subjects significantly.

Y| npl enent ati on

The Proxy pattern can exploit the follow ng | anguage features:

1. Overloadi ng the nmenber access operator in C++. C++ supports overl oadi ng
operator->, the menber access operator. Overl oadi ngthis operator |ets you
perform addi ti onal work whenever an object is dereferenced. This can be
hel pful for inplenenting sone ki nds of proxy; the proxy behaves just |ike

a pointer.

The foll owi ng exanple illustrates howto use this technique to i npl ement

a virtual proxy called | mgePtr.

cl ass | nage;
extern | mage* LoadAnl mageFil e(const char*);

/1 external function

class I magePtr {
public:
| magePtr (const char* imageFile);

virtual ~lmagePtr();

virtual |mage* operator->();
virtual |mage& operator*();
private:
| mge* Loadl mage();
private:
| mage* _i mage;
const char* _imageFil e;

}s

I magePtr:: I magePtr (const char* thelnageFile) {
_inmageFile = thel mageFil e;

_inmage = 0;

237



Design Patterns: Elenents of Reusable Object-Oriented Software

| mage* | magePtr::Loadl mage () {
if (_imge == 0) {
_image = LoadAnl mageFi | e(_i mageFile);
}

return _image;

The over | oaded -> and * operators use Loadlmage toreturn _imageto callers

(loading it if necessary).

| mage* | magePtr::operator-> () {

return Loadl mage();

| mage& | magePtr: :operator* () {

return *Loadl nage();

}
This approach lets you call |Inmage operations through | nagePtr objects
wi t hout going to the troubl e of maki ng the operati ons part of the | magePtr
interface:

I magePtr i mage = | magePtr("anl mageFi | eNane");

i mage- >Dr aw( Poi nt (50, 100));
/1 (inmage.operator->())->Draw Point (50, 100))

Notice how the i mage proxy acts |like a pointer, but it's not declared to
be a pointer to an I mage. That neans you can't use it exactly like a real
pointer to an I mage. Hence clients nmust treat | mage and | nagePtr objects

differently in this approach.

Overl oadi ng t he menber access operator i sn't a good sol ution for every ki nd
of proxy. Sone proxies need to know precisely which operation is called,

and overl oadi ng t he nenber access operator doesn't work in those cases.

Consi der the virtual proxy exanple in the Mtivation. The i mage shoul d be
| oaded at a specific ti me—nanely when the Drawoperationis called-and not
whenever the image i s referenced. Overl oadi ng t he access operat or doesn't
allowthis distinction. Inthat case we nust manual | y i npl enent each proxy

operation that forwards the request to the subject.
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These operations are usual ly very sim | ar to each ot her, as t he Sanpl e Code
denonstrates. Typically all operations verify that the request is |egal,
that the original object exists, etc., before forwarding the request to
the subject. It'stedioustowitethis code againandagain. Soit's common

to use a preprocessor to generate it automatically.

2. Using doesNot Understand in Snmalltalk. Smalltal k provides a hook that you
can use to support automatic forwarding of requests. Smalltalk calls
doesNot Under st and: aMessage when a client sends a nessage to a receiver
that has no corresponding nethod. The Proxy class can redefine

doesNot Under stand so that the nmessage is forwarded to its subject.

To ensure that a request is forwarded to the subject and not just absorbed
by the proxy silently, you can define a Proxy cl ass t hat doesn't under st and
any messages. Smalltalk | ets you do this by defining Proxy as a class with

no supercl ass.®

The mai n di sadvant age of doesNot Under stand: i s that nost Smal | tal k syst ens
have a f ewspeci al nessages that are handl eddirectly by thevirtual machi ne,
and t hese do not cause t he usual et hod | ook-up. The only onethat's usually

i mpl emented i n Cbj ect (and so can affect proxies) istheidentity operation

I f you' re goingto use doesNot Understand: toinpl ement Proxy, then you nmust
design around this problem You can't expect identity on proxies to nean
identity on their real subjects. An added di sadvantage is that

doesNot Under st and: was devel oped for error handling, not for building

proxies, and so it's generally not very fast.

3. Proxy doesn't al ways have to knowthe type of real subject. If a Proxy cl ass
candeal withits subject solelythroughanabstract interface, thenthere's
no need to make a Proxy class for each Real Subject class; the proxy can
deal with all Real Subject classes uniformy. But if Proxies are going to
instanti ate Real Subj ects (such as in a virtual proxy), then they have to

know t he concrete cl ass.

Anot her inplenentation issue involves howto refer to the subject before it's
instanti ated. Some proxi es have to refer to their subject whether it's on disk
or in menory. That neans they nust use sone form of address space-i ndependent

object identifiers. We used a file name for this purpose in the Mtivation.
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¥Sanpl e Code

The follow ng code inplements two kinds of proxy: the virtual proxy described

in the Mbtivation section, and a proxy inplenented with doesNot Understand:.Z

1. Avirtual proxy. The Graphic class defines the interface for graphical

obj ects:

class Graphic {
public:
virtual ~G aphic();

virtual void Draw(const Point& at) = O;

virtual void Handl eMbuse(Event & event) = 0;
virtual const Point& GetExtent() = 0;

virtual void Load(istreanm& from) = 0;
virtual void Save(ostrean& to) = 0;
prot ect ed:
G aphic();
h

The I mage cl ass i npl enents the Graphic interface to display i mage fil es.

I mage overrides Handl eMbuse to | et users resize the image interactively.

class Image : public Gaphic {
public:
| mage(const char* file); // loads inage froma file

virtual ~lmage();

virtual void Draw(const Point& at);

virtual void Handl eMouse(Event & event);
virtual const Point& GetExtent();

virtual void Load(istream& from;
virtual void Save(ostrean& to);
private:

11
b
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| mageProxy has the sane interface as | nage:

cl ass I mageProxy : public Gaphic {
public:
| mageProxy(const char* imageFile);

virtual ~lmageProxy();

virtual void Draw(const Pointé& at);

virtual void Handl eMouse(Event & event);
virtual const Point& GetExtent();

virtual void Load(istream& from;
virtual void Save(ostrean& to);
prot ect ed:
| mage* Cetlmage();
private:
| mage* _i mage;
Poi nt _extent;

char* _fil eNane;

The constructor saves a |l ocal copy of the nane of the file that stores the
imge, and it initializes _extent and _i nmage:

| mageProxy: : I mageProxy (const char* fileNane) {
_fileNane = strdup(fileNane);

_extent = Point::Zero; // don't know extent yet

_image = 0;

I mage* | mageProxy:: Getlmage() {
if (_image == 0) {
_image = new | mage(_fil eNane);
}

return _i mage;

The inplenmentati on of GetExtent returns the cached extent if possible;

otherwi se the image is |loaded fromthe file. Draw | oads the inage,
Handl eMouse forwards the event to the real

and
i mage.
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const Point& | mageProxy:: GetExtent () {
if (_extent == Point::Zero) {
_extent = Cetlmage()->CGetExtent();
}

return _extent;

voi d | mageProxy: : Draw (const Point& at) {

Get I mage()->Draw(at);

voi d | mageProxy: : Handl eMbuse (Event & event) {
Get | mage() - >Handl eMbuse(event) ;

The Save operation saves the cached i mage extent and the image file nanme
to a stream Load retrieves this information and initializes the

correspondi ng nmenbers.

voi d | mageProxy: : Save (ostrean& to) {

to << _extent << _fil eNane;

voi d | mageProxy: :Load (istream& from ({

from>> _extent >> _fil eNane;

Finally, suppose we have a class Text Docunent that can contain G aphic

obj ects:

cl ass Text Docunent {
public:

Text Docunent () ;

void I nsert (G aphic*);

11

We can insert an I mageProxy into a text docunment like this:

Text Docurmrent * text = new Text Docunent;
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11

text->Insert(new | mageProxy("anl mageFi | eNarme"));

Proxi es that use doesNot Understand. You can meke generic proxies in
Snal I tal k by defining classes whose superclass is nil? and defining the

doesNot Under st and: net hod to handl e nessages.

The f ol | owi ng net hod assunes t he proxy has areal Subj ect met hod t hat returns
its real subject. In the case of |InageProxy, this method would check to
see if the the | mage had been created, create it if necessary, and finally
return it. It uses performw thArguments: to performthe nessage being

trapped on the real subject.

doesNot Under st and: aMessage

A sel f real Subj ect
perform aMessage sel ector

wi t hArgunents: aMessage arguments

The ar gurment t o doesNot Under st and: i s ani nstance of Messagethat represents
the message not understood by the proxy. So the proxy responds to all
nessages by maki ng sure that the real subject exists before forwarding the

message to it.

One of the advant ages of doesNot Understand: is it can performarbitrary
processi ng. For exanpl e, we coul d produce a protection proxy by specifying
a set | egal Messages of messages to accept and then giving the proxy the

followi ng method:

doesNot Under st and: aMessage

N (1 egal Messages i ncludes: aMessage sel ector)
ifTrue: [self real Subject
perform aMessage sel ector
wi t hArgunents: aMessage argunent s]

ifFalse: [self error: "lIllegal operator']

Thi s met hod checks to see that a message is | egal before forwarding it to
thereal subject. If it isn't legal, thenit will send error: to the proxy,
which will result inaninfinite | oop of errors unless the proxy defines
error:. Consequently, the definitionof error: shoul d be copi ed fromcl ass

bject along with any nethods it uses.
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¥YKnown Uses

The virtual proxy exanpleinthe Mdtivation sectionis fromthe ET++ text buil ding

bl ock cl asses.

NEXTSTEP [ Add94] uses proxies (instances of class NXProxy) as |ocal
representatives for objects that may be distributed. A server creates proxies
for renpote objects when clients request them On receiving a nessage, the proxy
encodes it along withits argunents and then forwards the encoded nessage to t he
renote subject. Sinmlarly, the subject encodes any return results and sends them
back to the NXProxy object.

McCul | ough [ McC87] di scusses using proxiesin Smalltal kto access renote objects.
Pascoe [ Pas86] describes howto provide side-effects on method calls and access

control with "Encapsul ators."

YRel ated Patterns

Adapt er (157): An adapter provides adifferent interfaceto the object it adapts.
In contrast, a proxy provides the sanme interface as its subject. However, a proxy
used for access protection m ght refuse to performan operation that the subject

will perform so its interface may be effectively a subset of the subject's.

Decorator (196): Al though decorators can have similar i npl enentati ons as proxi es,
decorators have adifferent purpose. Adecorator adds one or nore responsibilities

to an object, whereas a proxy controls access to an object.

Proxies vary in the degree to which they are inplenmented |ike a decorator. A
protection proxy m ght beinplemented exactly | i ke a decorator. Onthe ot her hand,
a renote proxy will not contain a direct reference to its real subject but only
an indirect reference, such as "host ID and | ocal address on host." A virtual
proxy will start off with an indirect reference such as a file nanme but will

eventual ly obtain and use a direct reference.

®The i npl ement ati on of distributed objects in NEXTSTEP [ Add94] (specifically, the
cl ass NXProxy) uses this technique. The inplenentation redefines forward, the

equi val ent hook in NEXTSTEP.

"I'terator (289) describes another kind of proxy on page 299.
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8Al nost al | classes ultimately have Object as their superclass. Hence this is the

sane as saying "defining a class that doesn't have Object as its superclass.”
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Di scussi on of Structural Patterns

You may have noticed sinmlarities between the structural patterns, especially in
their participants and col |l aborations. This is soprobably because structural
patterns rely on the sane small set ofl anguage mechani snms for structuring code
and obj ects: single andnultipleinheritance for cl ass-based patterns, and obj ect
compositionfor object patterns. But the sinlarities belie the different

i ntentsanong these patterns. In this section we conpare and contrast groupsof

structural patterns to give you a feel for their relative nmerits.

¥YAdapter versus Bridge

The Adapter (157) and Bridge (171) patternshave sone conmmon attributes. Both
promote flexibility by providing al evel of indirection to another object. Both

i nvol ve forwardingrequests to this object froman interface other than its own.

The key difference between these patterns lies in their intents.Adapter focuses
on resol ving i nconpatibilities between two exi stinginterfaces. It doesn't focus
on howthoseinterfaces are i npl ement ed, nor does it consi der howt hey m ght evol ve
i ndependently. It's a wayof nmking two i ndependently designed classes work

toget her wi t houtrei npl ementi ng one or t he ot her. Bri dge, onthe ot her hand, bri dges
anabstractionandits (potentially numerous) i npl enentations. Itprovides astable
interface to clients even as it lets you vary theclasses that inplenent it. It

al so accomopdat es new i npl enent ati ons asthe system evol ves.

As a result of these differences, Adapter and Bridge are often used atdifferent
points in the software |lifecycle. An adapter often becomesnecessary when you
di scover that two i nconpatible classesshoul d work together, generally to avoid
replicating code. Thecoupling is unforeseen. In contrast, the user of a bridge
under st andsup-front that an abstraction nust have several inplenentations,
andboth may evol ve i ndependently. The Adapter pattern mekes things workafter
they' re desi gned; Bridge nakes t hemwor k bef ore t heyare. That doesn't mean Adapt er

is sonehowinferior to Bridge; eachpattern nerely addresses a different problem

You m ght think of a facade (see Facade (208)) as anadapter to a set of other
objects. But that interpretation overlooksthe fact that a facade defines a new
interface, whereas an adapterreuses an old interface. Remenber that an adapter
makes two exi sting interfaces work together as opposed to defining an entirel ynew

one.
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¥YConposite versus Decorator versus Proxy

Conposi te (183) and Decorator (196) have simlar structure diagrans, reflecting
the fact that both rely onrecursive conposition to organi ze an open-ended nunber
of objects.This comonality might tenpt you to think of a decorator object as
adegenerate conposite, but that misses the point of the Decoratorpattern. The

simlarity ends at recursive conposition, again becauseof differing intents.

Decorator is designed to let you add responsibilities to objectsw thout

subcl assing. It avoids the expl osi on of subcl asses that canarise fromtrying to
cover every conbi nation of responsibilitiesstatically. Conmposite has a different
intent. It focuses onstructuring classes so that many rel ated objects can be

treateduniformy, and multiple objects can be treated as one. Its focus isnot

on enbel lishment but on representation.

These intents are distinct but conplenentary. Consequently, theConposite and

Decorator patterns are often used in concert. Both | eadto the kind of design in
whi ch you can bui | d appl i cati ons just bypl uggi ng obj ects t oget her wi t hout defi ni ng
any new cl asses. There willbe an abstract class with sone subclasses that are
conposi tes, sonethat are decorators, and some that inplenent the fundanental

bui | di ngbl ocks of the system In this case, both conposites and decoratorswil |
have a cormon i nt erface. Fromt he poi nt of vi ewof t he Decorat orpattern, aconposite
i s a Concr et eConponent . Fromt he poi nt of vi ewofthe Conpositepattern, adecorator
is a Leaf. O course, they don'thave to be used together and, as we have seen,

their intentsare quite different.

Another pattern with a structure simlar to Decorator's is Proxy (233).Both
patterns describe how to provide a level of indirection to anobject, and the
i mpl enent ati ons of both t he proxy and decor at or obj ect keep a reference to anot her
object to which they forward requests. Once agai n, however, they are intended

for different purposes.

Li ke Decorator, the Proxy pattern conposes an object and provi des anidentical
interface to clients. Unlike Decorator, the Proxy pattern isnot concerned with
attachi ng or detachi ng properties dynam cally, andit's not designed for recursive
conposition. Its intent is to providea stand-in for a subject when it's

i nconveni ent or undesirabl e toaccess the subject directly because, for exanple,

it lives on a renotemachi ne, has restricted access, or is persistent.

In the Proxy pattern, the subject defines the key functionality, andthe proxy
provi des (or refuses) accesstoit. In Decorator, theconponent provides only part
of the functionality, and one or noredecorators furnish the rest. Decorator

addresses the situati on wherean object's total functionality can't be deterni ned

at conpile tinme,at |east not conveniently. That open-endedness nakes recursive
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conposi tion an essential part of Decorator. That isn't the case i nProxy, because
Proxy focuses on one rel ationshi p-between the proxyand its subject—and that

rel ati onship can be expressed statically.

These differences are significant because they capture solutions tospecific

recurring probl ens i nobject-oriented desi gn. But thatdoesn't neanthese patterns
can't be conbined. You m ght envision aproxy-decorator that adds functionality
to a proxy, or adecorator-proxy that enbellishes a renote object. Although such
hybri dsm ght be useful (we don't have real exanples handy), they aredivisible

into patterns that are useful
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5. Behavioral Patterns

Behavi oral patterns are concerned with algorithns and theassi gnnent of

responsi bilities between objects. Behavi oral patternsdescribe not just patterns
of objects or classes but also the patternsof comruni cati on between them These
patterns characterize conpl excontrol flowthat'sdifficult tofollowat run-time.
They shift yourfocus away fromflow of control to |l et you concentrate just on

the wayobj ects are interconnected.

Behavi oral class patterns useinheritance to distribute behaviorbetween cl asses.
This chapter includes two such patterns. Tenplate Method (360) is the sinpler
and nore common ofthe two. A tenplate method is an abstract definition of an
algorithmlIt defines the algorithmstep by step. Each step invokes either
anabstract operationor aprimtiveoperation. Asubcl ass fl eshes outthe al gorithm
by defining the abstract operations. The otherbehavioral class patternis
Interpreter (274), whichrepresents a granmar as a cl ass hi erarchy and i npl ement s

aninterpreter as an operation on instances of these classes.

Behavi oral object patterns use object conposition rather thaninheritance. Sone
describe how a group of peer objects cooperate toperforma task that no single
obj ect can carry out by itself. Aninportant issue here is how peer objects know
about each ot her. Peerscoul d mai ntainexplicit references to each other, but that
woul di ncrease their coupling. Inthe extrene, every object woul d knowabout every
other. The Medi ator (305) pattern avoidsthis by introducing a nediator object

bet ween peers. The nedi at or provi des the indirection needed for | oose coupling.

Chain of Responsibility (251) provides even |oosercoupling. It lets you send
requeststoanobject inplicitlythroughachainof candi dat e obj ects. Any candi date
may ful fill the requestdependi ng onrun-tinme conditions. The nunber of candi dat es
i sopen-ended, and you can sel ect which candi dates participate in thechain at

run-tine.

The Observer (326) pattern defines and nai ntains adependency between objects.
The cl assi ¢ exanpl e of Observer is inSnmalltal k Model /View Controller, where all

views of the nodel are notified whenever thenpdel's state changes.

O her behavi oral object patterns are concerned with encapsul ati ngbehavi or in an
obj ect and delegating requests to it. The Strategy (349) pattern encapsul ates
an al gorithminanobject. Strategy makes it easyto specify andchangetheal gorithm
anobj ect uses. The Conmand (263) pattern encapsul ates arequest in an object so
that it can be passed as a paraneter, storedon a history list, or manipul at ed
in other ways. The State (338) pattern encapsul ates the states of an objectso
that the object can change its behavior when its state object changes. Visitor

(366) encapsul ates behavi or that woul dot herwi se be distributed across cl asses,
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and lterator (289) abstracts the way you access andtraverse objects in an

aggregate.
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Chai n of Responsibility

¥ ntent

Avoi d coupling the sender of a request to its receiver by giving norethan one
obj ect a chance to handl e the request. Chain the receivingobjects and pass the

request along the chain until an objecthandles it.

YMoti vati on

Consi der a context-sensitive help facility for a graphical userinterface. The
user can obtain help information on any part of theinterface just by clicking
onit. The hel pthat's provi ded depends ont he part of theinterfacethat's sel ected
and its context; forexanple, a button wi dget in a dial og box nmi ght have different
hel pi nformation than a simlar button in the nain window |f no specifichelp

informati on exists for that part of the interface, thenthe help system shoul d
di splay a nore general hel p message about thei mmedi ate context—the dial og box

as a whole, for exanple.

Hence it's natural to organize help information according to itsgenerality—from
t he nost specific to the nost general. Furthernore,it's clear that a hel p request
i s handl ed by one of several userinterface objects; whi chone depends onthe cont ext

and how specificthe available help is.

The problemhere is that the object that ultimately provides thehelp isn't known
explicitlytothe object (e.g., the button) that initiates the hel p request. \Wat
we need is a way to decoupl e thebutton that initiates the hel p request fromthe
obj ects that m ghtprovide hel p informati on. The Chain of Responsibility pattern

defi neshow t hat happens.
The idea of this pattern is to decoupl e senders and receivers bygiving multiple

objects a chance to handl e a request. The requestgets passed along a chain of

objects until one of themhandles it.
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The first object inthe chainreceivestherequest and either handl esit or forwards
it to the next candi date on the chain, which doeslikew se. The obj ect that made
the request has no explicit know edgeof who will handle it—we say the request

has an inplicitreceiver.

Let's assume the user clicks for hel p onabutton wi dget marked"Print." The button
is contained in an instance of PrintDial og,which knows the application object
it belongs to (see preceding object diagram.The followi ng interaction di agram

illustrates how the hel prequest gets forwarded al ong the chain:

aPrintButton aPrintDialog anApplication
L

HandieHelp()

HandleHelp(}

H

Inthis case, neither aPrintButton nor aPrintDial og handl es t herequest; it stops
at anApplication, which can handle it or ignore it.The client that issued the

request has no direct reference to theobject that ultimately fulfills it.

To forward the request along the chain, and to ensure receivers remaininplicit,
each obj ect on the chain shares a common interface forhandling requests and for
accessing its successor on thechain. For exanple, the help systemm ght define
a Hel pHandl er classwith a correspondi ng Handl eHel p operati on. Hel pHandl er can
be theparent class for candi date object classes, or it can be defined as am xin

cl ass. Then cl asses t hat want t o handl e hel p request s can nakeHel pHandl er a parent:
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handler
HelpHandier
HandleHelp(} aq-----| handler—=HandleHeip{)
Application Widget
X if can handle | =
Dialog Button Showkelp()
}else |

HandleHelp{} <«-f-——- Handier::HandleHalg()
ShowHelp() }

The Button, Dial og, and Application cl asses use Hel pHandl er operationsto handl e
hel p requests. Hel pHandl er's Handl eHel p operation forwardsthe request to the
successor by default. Subcl asses can override t hi soperationto provide hel p under
the right circunstances; otherw sethey can use the default inplenentation to

forward the request.

YApplicability

Use Chain of Responsibility when

nmore than one object nay handl e a request, and the handler isn't knowna
priori. The handl er should be ascertai ned autonmatically.

you want to issue a request to one of several objects w thoutspecifying
the receiver explicitly.

t he set of obj ectsthat can handl e arequest shoul d be speci fi eddynami cal ly.

¥Structure

SUCCESS50r
Client [——————ws Handler
HandleRagquesi{)
ConcreteHandler1 ConcreteHandler2
HandieRequest() HandleReqgueast()
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A typical object structure might ook like this:

T
aClient
j aConcreteHandler w
kal-ianﬁler - |
- —k SUCCASSOr ~

aConcreteHa ndlerw

SUCCESSOT

YParticipants

Handl er (Hel pHandl er)
0 defines an interface for handling requests.
O (optional) inplenents the successor |ink.
Concr et eHandl er (PrintButton, PrintDial og)
0 handles requests it is responsible for.
O can access its successor.
0 if the ConcreteHandl er can handl e t he request, it does so; ot herw se
it forwards the request to its successor.
Cient
O initiates the request to a ConcreteHandl er object on the chain.

¥YCol | aborati ons

When a client i ssues a request, the request propagates al ong t he chai nunti |
a Concret eHandl er object takes responsibility for handling it.

¥Consequences

Chain of Responsibility has the follow ng benefits and liabilities:

1. Reducedcoupling. The patternfrees anobject fromknow ng whi ch ot her obj ect
handl es arequest. An object only has to know that a request wll be
handl ed"appropriately." Both the receiver and the sender have no
explicitknow edge of each other, and an object in the chain doesn't have

t oknow about the chain's structure.

As aresult, Chain of Responsibility can sinplify objectinterconnections.
I nst ead of objects maintainingreferences to allcandi date receivers, they

keep a single reference to their successor.
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2. Added flexibility in assigning responsibilities to objects. Chain of
Responsibility gives you added flexibility in
di stributingresponsibilities anbng objects. You can add or
changeresponsibilities for handling a request by adding to or
ot herwi sechangi ng the chain at run-time. You can conbine this with
subcl assi ngt o speci alize handlers statically.

3. Receipt isn't guaranteed. Since arequest has noexplicit receiver, there's
no guaranteeit'll be handl ed—the request can fall off the end of the
chai nwi t hout ever being handl ed. A request can al so go unhandl ed when

thechain is not configured properly.

Y| npl enent ati on

Here are inplenentation issues to consider in Chain of Responsibility:

1. Inplenmentingthe successor chain. There are two possi bl e ways to i npl enent
the successor chain:
a. Definenewlinks (usuallyinthe Handl er, but Concret eHandl er scoul d
define theminstead).

b. Use existing |inks.

Qur exanpl es so far define newlinks, but often you can use exi sti ngobj ect
references to formthe successor chain. For exanple, parentreferences in
a part-whol e hierarchy can define a part's successor. Aw dget structure
m ght al ready have such | i nks. Conposite (183) di scusses parent references

in nore detail.

Using existing |inks works well when the |inks support the chain youneed.
It saves you fromdefining links explicitly, andit savesspace. But if the
structure doesn't reflect the chain ofresponsibility your application

requires, then you'll have to define redundant |inks.

2. Connecting successors. |f there are no preexistingreferences for defining
a chain, then you'llhave to introduce themyourself. In that case, the
Handl er not only defines the interface for the requests but usually
mai ntai ns thesuccessor as well. That lets the handler provide a
def aul ti npl enentati on of Handl eRequest that forwards the request to
t hesuccessor (if any). If a ConcreteHandl er subclass isn't interestedin
the request, it doesn't have to override the forwardi ng operation, since

its default inplenentation forwards unconditionally.
Here's a Hel pHandl er base class that maintains a successor |ink:

cl ass Hel pHandl er {
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public:

Hel pHandl er (Hel pHandl er* s) : _successor(s) { }

virtual

private:

voi d Handl eHel p();

Hel pHandl er* _successor;

}s

voi d Hel

pHandl er: : Handl eHel p () {

if (_successor) {

_successor - >Handl eHel p();

}

Representing requests. Different options are available for representing
requests. In thesinplest form the request is a hard-coded operation
i nvocation, as inthe case of Handl eHel p. This i s conveni ent and safe, but

you canforwardonly thefixedset of requeststhat the Handl er cl ass defi nes.

An alternativeistouse asinglehandler function that takes arequest code
(e.g., an integer constant or a string) as paraneter.This supports an
open-ended set of requests. The only requirenent isthat the sender and

recei ver agree on how the request shoul d beencoded.

This approach is nore flexible, but it requires conditional statementsfor
di spat chi ng t he request based on its code. Mreover, there's notype-safe
way to pass paraneters, so they nust be packed and unpackedmanual |y.

Qobviously this is |l ess safe than invoking an operationdirectly.

To address the paraneter-passing problem we can use separate

request obj ects that bundl e request paraneters. A Requestcl ass can
represent requests explicitly, and new ki nds of requests canbe defi ned by
subcl assi ng. Subcl asses can definedifferent paraneters. Handl ers nust know
t he ki nd of request (that i s, whi chRequest subcl ass they' re usi ng) to access

these paraneters.

Toidentifytherequest, Request candefineanaccessorfunctionthat returns
an identifier for the class. Alternatively, thereceiver can use run-tinme

type information if the inplementationl anguages supports it.

Here i s a sketch of adispatch functionthat uses request objectstoidentify
requests. A GetKi nd operation defined in the base Requestcl ass identifies

the kind of request:

voi d Handl er:: Handl eRequest (Request* theRequest) {

switch (theRequest->CetKind()) {
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case Hel p:

/1 cast argument to appropriate type
Handl eHel p( ( Hel pRequest *) theRequest);
br eak;

case Print:

Handl ePri nt ((Pri nt Request*) theRequest);
11

br eak;

defaul t:

Subcl asses can extend the dispatch by overridi ngHandl eRequest. The

subcl ass handl es only therequests inwhichit'sinterested; other requests
areforwardedtotheparent class. Inthisway, subcl asses effectivelyextend
(rather thanoverride) the Handl eRequest operati on. For exanpl e, here's how

an Ext endedHandl er subcl ass extendsHandl er's version of Handl eRequest:

cl ass ExtendedHandl er : public Handler {

public:

virtual void Handl eRequest (Request* theRequest);
11

}s

voi d Ext endedHandl er: : Handl eRequest ( Request *t heRequest ) {
switch (theRequest->CGetKind()) {

case Preview

/1 handl e the Preview request

br eak;

defaul t:

/1 let Handl er handl e other requests

Handl er : : Handl eRequest (t heRequest);

}

}

4. Automatic forwarding in Smalltal k. You can use the doesNot Under st and
nmechanismin Snalltalk toforward requests. Messages that have no
correspondi ng nethods aretrapped in the inplenentation of
doesNot Under st and, whi chcan be overridden to forward the message to an
obj ect's successor. Thus it isn't necessary to inplenent forwarding
manual ly; the classhandl es only the request inwhichit's interested, and

it relies ondoesNotUnderstand to forward all others.
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¥Sanpl e Code

The fol | owi ng exanpl eillustrates howa chai nof responsibility canhandl erequests
for an on-line help systemlike the one describedearlier. The help request is
anexplicit operation. W'l | use exi stingparent referencesinthew dget hierarchy
to propagat e request sbetween wi dgets in the chain, and we'll define a reference

in theHandl er class to propagate hel p requests between nonw dgets in thechain.

The Hel pHandl er class defines the interface for handlinghel p requests. It

mai ntains a help topic (which is enpty by default)and keeps a reference to its
successor on the chain of hel p handl ers. The key operation i s Handl eHel p, which
subcl assesoverride. HasHel pis a conveni ence operati on for checki ngwhet her there

is an associ ated hel p topic.

typedef int Topic;
const Topic NO HELP_TOPIC = -1,

cl ass Hel pHandl er {

public:

Hel pHandl er (Hel pHandl er* = 0, Topic = NO HELP_TOPI O);
virtual bool HasHel p();

virtual void SetHandl er (Hel pHandl er*, Topic);

virtual void Handl eHel p();

private:

Hel pHandl er* _successor;

Topi ¢ _topic;

b

Hel pHandl er: : Hel pHandl er (
Hel pHandl er* h, Topic t

) : _successor(h), _topic(t) { }

bool Hel pHandl er:: HasHelp () {
return _topic !'= NO HELP_TOPI C,
}

voi d Hel pHandl er: : Handl eHel p () {
if (_successor !=0) {

successor - >Handl eHel p() ;

}

}
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Al'l w dgets are subcl asses of the Wdget abstract class. Wdget is a subcl ass of
Hel pHandl er, since alluser interface el enents can have hel p associ ated with them

(We coul dhave used a nixi n-based inplenentation just as well.)

class Wdget : public Hel pHandl e

_‘
—_~

prot ect ed:

W dget (W dget* parent, Topic t = NO HELP_TOPI C);
private:

W dget* _parent;

b

W dget:: Wdget (Wdget* w, Topic t) : HelpHandler(w, t) {
_parent = w;

}

In our exanple, a button is the first handler on the chain. TheButton class is
a subcl ass of Wdget. The Button constructor takes two paraneters: a reference

toits encl osing widget and the hel p topic.

class Button : public Wdget {

public:

Button(Wdget* d, Topic t = NO HELP_TOPIQ);
virtual void Handl eHel p();

/] Wdget operations that Button overrides...

}s

Button's version of HandleHelp first tests to see ifthere is a help topic for
buttons. If the devel oper hasn't defi nedone, then the request gets forwarded to
the successor using theHandl eHel p operation in Hel pHandler. If thereis a help

topic, then the button displays it, and the searchends.
Button::Button (Wdget* h, Topic t) : Wdget(h, t) { }

void Button:: Handl eHelp () {
if (HasHel p()) {

/1 offer help on the button
} else {

Hel pHandl er: : Handl eHel p();

}

}

Dial og i npl enents a simlar schene, except that itssuccessor is not a wi dget but
any help handler. In ourapplication this successor will be an instance of
Appli cation.
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class Dialog : public Wdget {

public:

Di al og(Hel pHandl er* h, Topic t = NO HELP_TOPIC);
virtual void Handl eHel p();

/1 Wdget operations that Dialog overrides...

11
}s

Di al og: : Di al og (Hel pHandl er* h, Topic t) : Wdget(0) {
Set Handl er (h, t);
}

void Dial og:: Handl eHel p () {
if (HasHelp()) {

/1 offer help on the dialog
} else {

Hel pHandl er: : Handl eHel p();

}

}

At the end of the chain is an instance of Application. Theapplicationis not a
wi dget, so Applicationis subclasseddirectly fromHel pHandl er. When a hel p request
propagatestothislevel, theapplicationcansupplyinformati onontheapplication

in general, orit can offer a list of different help topics:

class Application : public Hel pHandl er {
public:

Application(Topic t) : Hel pHandler(0, t) { }
virtual void Handl eHel p();

/1 application-specific operations...

}s

voi d Application::Handl eHelp () {

/1 show a list of help topics

}

The fol |l owi ng code creates and connects these objects. Here thedial og concerns

printing, and so the objects have printing-rel atedtopics assigned.

const Topic PRINT_TOPIC = 1;
const Topi ¢ PAPER_ORI ENTATI ON_TOPI C = 2;
const Topi c APPLI CATION TOPIC = 3;

Application* application = new Applicati on(APPLI CATI ON_TOPI C) ;
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Di al og* di al og = new Di al og(application, PRI NT_TOPIC);

Button* button = new Button(dial og, PAPER_CORI ENTATI ON_TOPI C) ;

We can invoke the hel p request by calling Handl eHel p on anyobj ect on the chain.

To start the search at the button object, justcall HandleHelp on it:
but t on- >Handl eHel p();

In this case, the button will handle the request inmedi ately. Notethat any
Hel pHandl er cl ass coul d be made t he successor of Di al og. Moreover, its successor
coul d be changeddynami cally. So no matter where a dialog is used, you'll get

t hepr oper cont ext -dependent help information for it.

¥YKnown Uses

Several class libraries use the Chain of Responsibility pattern tohandl e user
events. They use different nanes for the Handl er class, but the ideais the sane:
When t he user clicks the nouse or presses akey, an event gets generated and passed
al ong t he chai n. MacApp [ App89] and ET++ [ WGVB8] cal | it "Event Handl er, " Symantec' s
TCL library [SymD3b] calls it "Bureaucrat," andNeXT's AppKit [ Add94] uses the

nane "Responder."

The Unidraw framework for graphical editors defines Command obj ect st hat
encapsul at e requests to Conponent and Conponent Vi ewobj ects [ VL90]. Comands are
requests in the sensethat a conponent or component view nmay interpret a comrand
to performan operation. This corresponds to the "requests as objects"approach
described in Inplenentation. Conponents and conponent viewsnay be structured
hi erarchically. Aconponent or a conponent vi ewnayforward command i nterpretation
toits parent, whichmay inturnforwardit toits parent, and so on, thereby form ng

a chain ofresponsibility.

ET++ uses Chai n of Responsibility to handl e graphi cal update. Agraphi cal object
call sthelnvalidateRect operati onwhenever it nustupdate apart of its appearance.
A graphi cal object can't handl el nval i dateRect by itsel f, because it doesn't know
enough about itscontext. For exanple, a graphical object can be enclosed in
obj ectslike Scrollers or Zooners that transformits coordi nate system That neans
t he obj ect mi ght be scrol | ed or zooned sothat it's partiallyout of view. Therefore
the defaul t i npl ement ati on of | nval i dat eRect forwards t he request to t he encl osi ng
contai ner object. The lastobject in the forwarding chain is a Wndow i nstance.
By t he ti neW ndowr ecei ves t he request, theinvalidationrectangl ei s guaranteedto
be transformed properly. The W ndow handl es | nval i dat eRect bynotifyi ngthe wi ndow

systeminterface and requesting an update.
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YRel ated Patterns

Chain of Responsibility is often applied in conjunction with Conposite (183).

There, a conponent's parent can act as its successor.
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Conmmand

¥ ntent

Encapsul ate a request as an obj ect, thereby | etting you paraneterizeclients with

di fferent requests, queue or |log requests, and supportundoabl e operations.

YAl so Known As

Action, Transaction

YMoti vati on

Sonetimes it's necessary to issue requests to objects w thout know nganythi ng
about the operation being requested or the receiver of therequest. For exanple,
user interface toolkits include objects |ikebuttons and nmenus that carry out a
request in response to user input.But the toolkit can't inplement the request
explicitly in the buttonor menu, because only applications that use the tool kit
know what shoul d be done on which object. As tool kit designers we have no wayof

knowi ng the receiver of the request or the operations that willcarry it out.

The Conmand pattern |l ets tool kit obj ects nake requests of unspecifiedapplication
objects by turning the request itself into an object. Thisobject can be stored
and passed around | i ke ot her obj ects. The key tothis patternis an abstract Comand
cl ass, which declares an interfacefor executing operations. Inthe sinplest form
this interfacei ncludes an abstract Execute operation. Concrete Conmand

subcl assesspecify a receiver-action pair by storing the receiver as an

i nstancevari abl e and by i npl enenti ng Execute to i nvoke the request. Thereceiver

has the know edge required to carry out the request.

Application Q—mﬁ—ﬂ Menultem Fo——™= Command
command
AddiMenultem) Clicked{) 9 Execule])
!
I

command-=Execuler) k/ I

Add{Document)

Document

Cpeni)
Closel)
Cut(}

Copyl)
Pasta()
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Menus can be inplenmented easily with Command objects. Each choice ina Menu is
an i nstance of a Menultemcl ass. An Application cl ass createsthese nenus and their
nmenu itens along with the rest of the user interface. The Application class al so

keeps track of Docunent objects that a user hasopened.

The application configures each Menultemwith an i nstance of aconcrete Command
subcl ass. When the user selects a Menultem theMenultemcalls Execute on its

comrand, and Execut e carri es out t heoperation. Menultens don't knowwhi ch subcl ass
of Conmand t hey use. Command subcl asses store the recei ver of therequest and i nvoke

one ornore operations on the receiver.

For exanpl e, Past eCommand supports pastingtext fromthe clipboardi ntoaDocunent.
Past eCormmand' s recei ver i s the Docunent object it issupplied uponinstantiation.

The Execute operation invokes Paste onthe receiving Document.

Command
Exegculel)
Document /k
Open() | -
Closeal)
. F"?m:' docurrent
Cut() PasteCommand
Copyl)
Pastel) Execute() -—--——-——q-—-——-——--- document-=Paste() T

OpenComand' s Execute operationis different: it pronpts the userfor a docunent
name, creates a correspondi ng Docunent obj ect, adds t hedocunent to the receiving

application, and opens the document.

Command

Execufe()

A

I
Application !
O d
Add{Document) application ponComman
Executal) O
AskUser() |
1
i
namea = Askiiser() T

dos = new Document{nama)
application-=Add{dac)
doc—»0pen()
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Sometimes a Menultem needs to execute a sequence of commands. For exanple, a
Menultem for centering a page at nornal size coul d beconstructed froma

Cent er Docunment Conmrand obj ect and aNor mal Si zeCommand obj ect. Because it's conmon
to string conmandst ogether in this way, we can define a MacroCommand cl ass to
al l ow aMenultem to execute an open-ended number of commands. MacroConmand i sa
concr et e Conmand subcl ass t hat si npl y execut es a sequence of Cormands. Macr oComrand
has no explicit receiver, because the conmandsit sequences define their own

receiver.

Command
Exaciitef) r‘

—

MacroCommand

commands

Execute(}

for alf ¢ in commands =
C-=Executel)

In each of these exanples, notice how the Command pattern decoupl est he object
that invokes the operation fromthe one havi ng theknow edge to performit. This
gives us a lot of flexibility indesigning our user interface. An application can
provi de both a nenuand a push button interface to a feature just by naking the
nmenu andt he push button share an i nstance of t he same concrete Cormand subcl ass. W
can replace conmands dynam cally, which would be useful forinplenmenting
context-sensitive nenus. We can al so support conmandscripting by conposi ng
comrands i nto | arger ones. Al of this ispossible because the object that issues
a request only needs to knowhowtoissueit; it doesn't needto knowhowt he request

will be carried out.

YApplicability

Use the Command pattern when you want to

paraneteri ze obj ects by anactionto perform as Menul temobj ects di dabove.
You can express such paraneterization in a procedural |anguage with a

cal I back function, that is, a function that's registered somewhere to be
called at a later point. Commands are an object-oriented repl acenent for

cal | backs.

265



Design Patterns: Elenents of Reusable Object-Oriented Software

speci fy, queue, and execute requests at different tinmes. A Command obj ect
can have a lifetime i ndependent of the original request. If the receiver

of a request can be represented i n an address space-i ndependent way, then
you can transfer a command object for the request to a different process
and fulfill the request there.

support undo. The Command' s Execut e operation can store state for reversing
itseffectsinthe commanditself. The Conmand i nterface nmust have an added
Unexecut e operationthat reversesthe effects of apreviouscall toExecute.
Execut ed commands are stored in a history list. Unlimted-|evel undo and
redo is achieved by traversing this |ist backwards and forwards calling
Unexecute and Execute, respectively.

support | oggi ng changes so that they can be reapplied in case of a system
crash. By augnenting the Comrand i nterface wi th | oad and store operati ons,
you can keep a persistent | og of changes. Recovering froma crash i nvol ves
rel oadi ng | ogged commands fromdi sk and reexecuting themw th t he Execute
operati on.

structure a system around hi gh-1evel operations built on prinmtives
operations. Such astructureis comonininformationsystens that support
transactions. A transaction encapsul ates a set of changes to data. The
Command pattern offers a way to nodel transactions. Comrands have a conmon
interface, letting you invoke all transactions the sane way. The pattern

al so nekes it easy to extend the systemw th new transactions.

¥YStructure

Client Invoker [o————————mm Command

Exectite(}

L g Receiver

receiver
Action{) ConcreteCommand
Executa) O-------- F=-1 receiver-=Action();
___________________________________ ™ state

YParticipants

Command
0 declares an interface for executing an operation.

Concr et eConmand ( Past eConmand, OpenConmmand)
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0 defines a binding between a Recei ver object and an acti on.
0 inplements Execute by invoking the correspondi ng operation(s) on
Recei ver.
Cient (Application)
O creates a ConcreteComuand object and sets its receiver.
I nvoker (Menultem
0 asks the conmmand to carry out the request.
Recei ver (Docunent, Application)
0 knows how to performthe operations associated with carrying out
a request. Any class nay serve as a Receiver.

¥Col | aborati ons

The client creates a ConcreteComuand obj ect and specifies its receiver.
An I nvoker object stores the ConcreteCommand object.

The i nvoker i ssues arequest by cal | i ng Execut e ont he command. Whenconmands
are undoabl e, ConcreteCommand stores state for undoing theconmand pri or
to invoki ng Execute.

The Concr et eCommrand obj ect i nvokes operations onits receiver to carryout
the request.

The fol | owi ng di agramshows the i nteracti ons between these objects.It illustrates

how Command decoupl es the i nvoker fromthe receiver(and the request it carries

out).
aReceiver aClient aCommand aninvoker
|
naw Command{aReceivar) :
StoreCommand{aCommarnd)
W Actiar) Execute)
¥YConsequences

The Conmand pattern has the foll owi ng consequences:

1. Conmand decoupl es the object that invokes the operation fromthe onet hat

knows how to performit.
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2. Commands are first-class obj ects. They can be mani pul at ed and ext endedl i ke
any other object.

3. You can assenble comands into a conposite conmmand. An exanple is
t heMacr oCommand cl ass descri bed earlier. | ngeneral, conposite commandsare
an instance of the Conposite (183) pattern.

4. It's easy to add new Conmmands, because you don't have to changeexi sting

cl asses.

Y| npl enent ati on

Consi der the follow ng issues when inplenmenting the Conmand pattern:

1. How intelligent should a conmand be?A conmmand can have a wi de range of
abilities. At one extreme itnmerely defines a binding between a receiver
andthe acti onsthat carryout therequest. At theother extremeit i npl enents
everythingitsel fw thout del egatingtoareceiver at all. Thelatter extrenme
i s useful when you want to define conmands that are independent of
exi stingcl asses, when no sui tabl e recei ver exi sts, or when a conmmand knows
itsreceiver inplicitly. For exanple, a conmand that creates
anot herappl i cati on wi ndow nmay be just as capable of creating the w ndow
asany ot her obj ect. Sonmewhere in between these extrenes are conmandst hat
have enough know edge to find their receiver dynanically.

2. Supporting undo and redo. Commands can support undo and redo capabilities
i f they provi de awayto reverse their execution (e.g., an Unexecute or Undo
operation). AConcreteConmand cl ass might need to store additional state
to do so. Thisstate can include

0 the Receiver object, which actually carries out operations
i nresponse to the request,

0 the arguments to the operation performed on the receiver, and

0 any original values in the receiver that can changeas a result of
handl i ng t he request. The recei ver nust provi deoperations that | et

the conmand return the receiver to its prior state.

To support one | evel of undo, an application needs to store only t hecomrand
that was executed |l ast. For nmultiple-level undo and redo, theapplication
needs a history |list of cormands t hat havebeen execut ed, where t he maxi mum
I ength of the list determ nes thenunber of undo/redo | evels. The history
i st stores sequences of conmands that have been executed. Traversing
backward through thelist and reverse-executing commands cancels their

effect; traversingforward and executi ng comrands reexecutes them

An undoabl e conmand m ght have to be copied before it can be pl aced ont he

historylist. That's becausethe conmand obj ect that carriedouttheoriginal
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request, say, froma Menultem will performotherrequests at |ater tines.
Copyingisrequiredtodistinguishdifferentinvocations of the sane command

if its state can vary acrossinvocations.

For exanple, a Del eteConmand that del etes sel ected objects nust
storedifferent sets of objects each tinme it's executed. Therefore

t heDel et eCommand obj ect nust be copi ed fol | owi ng executi on, and t he copyi s
placedonthehistorylist. | f the command' s st ate never changeson executi on,
then copying is not required—only areference to thecommand need be pl aced
on the history list. Commands that nust becopi ed before being placed on

the history list act as prototypes (see Prototype (133)).

3. Avoidingerror accunul ationinthe undo process. Hysteresi s can be a probl em
in ensuring a reliable,semantics-preserving undo/redo nmechani sm Errors
can accunul ate ascommands are executed, unexecuted, and reexecuted
repeatedl y sothatan application's state eventually diverges fromori gi nal
values. lItmay be necessary therefore to store nore information in the
conmand toensure that objects are restored to their original state. The
Mermento (316) pattern can be applied to give the commandaccess to this
informati on wi t hout exposing the internals of otherobjects.

4. Using C++ tenpl ates. For cormands that (1) aren't undoable and (2) don't
require arguments, we can use C++ tenplates to avoid creating a Command
subcl ass forevery kind of action and receiver. W show howto do this in

the Sanpl eCode section.

¥Sanpl e Code

The C++ code shown here sketches the i npl enentati on of the Conmand cl assesin the
Motivation section. We'll define OpenCommand, Past eConmand, and Macr oComrand.

First theabstract Conmand cl ass:

class Command {

public:

virtual ~Command();

virtual void Execute() =0
pr ot ect ed:

Comand() ;
H

OpenComand opens a docunent whose name i s supplied by theuser. An OpenConmand
must be passed anApplication object in its constructor. AskUser is
ani npl enentation routine that pronpts the user for the nane of thedocunment to

open.
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cl ass OpenConmmand : public Command {
public:

OpenConmand( Appl i cation*);

virtual void Execute();

prot ect ed:

virtual const char* AskUser();
private:

Application* _application;

char* _response;

b

OpenConmand: : OpenConmand (Application* a) {
_application = a;

}

voi d OpenConmmand: : Execute () {

const char* nane = AskUser();

if (nane !'=0) {

Docunent * docunent = new Docunent (nane);
_application->Add(docunent);

docunent - >Qpen() ;

}

}

A Past eCommand nust be passed a Docunment object asits receiver. The receiver is

given as a paraneter to PasteCommand' sconstructor.

cl ass PasteConmand : public Command {
public:

Past eConmand( Docunent *) ;

virtual void Execute();

private:

Docunent * _docunent ;

H
Past eConmand: : Past eCommand ( Docunent* doc) { _docunent = doc; } voi d
Past eConmand: : Execute () { _docunent - >Past e() ; }

For sinple comrands that aren't undoabl e and don't require argunents,we can use
a class tenplate to paraneterize the command's receiver. W' || define a tenplate
subcl ass Si npl eCommand for suchcommands. Sinpl eConmand is paraneterized by

theRecei ver type and nmai ntai ns a bi ndi ng between a recei ver objectand an acti on

stored as a pointer to a nmenber function.
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tenpl ate <cl ass Recei ver>

class Sinpl eConmmand : public Command {
public:

typedef void (Receiver::* Action)();

Si npl eCommand( Recei ver* r, Action a)
_receiver(r), _action(a) { }

virtual void Execute();

private:

Action _action;

Recei ver* _receiver;

}s

The constructor stores the receiver and the action in the correspondi ngi nstance

vari abl es. Execute sinply applies the action to thereceiver.

tenpl ate <cl ass Recei ver>

voi d Si npl eCommandé&l t Recei ver >: : Execute () { (_receiver->*_action)(); }

To create a command that calls Actionon an instance of class M/Class, a client

sinply wites

M/Cl ass* receiver = new MWd ass;

11

Command* aCommand =

new Si npl eCommand<MyCl ass>(recei ver, &WUd ass:: Action);
11

aConmand- >Execut e() ;

Keep in mnd that this solution only works for sinple commands. More conpl ex
comrands that keep track of not only their receivers but al so argunments and/ or

undo state require a Command subcl ass.

A Macr oCommand manages a sequence of subconmands and provi desoper ati ons f or addi ng
and renovi ng subcomands. No explicit receiverisrequired, becausethe subcomands

al ready define their receiver.

cl ass MacroConmand : public Command {
public:

Macr oConmand() ;

virtual ~MacroConmand();

virtual void Add(Command*);

virtual void Renpve(Command*);

virtual void Execute();

private:

Li st <Conmand*>* _cnds;
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b

The key to the MacroCommand is its Execute nenberfunction. This traverses all

t he subcommands and perfornsExecute on each of them

voi d MacroConmmand: : Execute () {

Li stlterator<Conmand*> i (_cnds);

for (i.First(); !'i.lsDone(); i.Next()) {
Command* ¢ = i.Currentltem();

c- >Execut e();

}

}

Not e that should the MacroConmmand i npl ement anUnexecute operation, then its
subconmands nust beunexecuted in reverse order relative to

Execut e' si npl enent ati on.

Fi nal |y, MacroCommand must provide operations to nmanage itssubcommands. The

MacroConmmend is al so responsi ble fordeleting its subconmmands.

voi d Macr oCommand: : Add ( Command* c¢) { _cnds- >Append(c) ; }

voi d Macr oConmand: : Renove (Comrand* c) { _cnds->Renove(c) ; }

YKnown Uses

Per haps the first exanpl e of the Command pattern appears i n a paper byLi ebernman
[Li e85]. MacApp [App89] popul ari zedt he notion of commands for inplenenting
undoabl e operations. ET++ [ WGWMB8], InterViews [LCl +92], andUni draw [ VL90] al so
define classes that follow theComrand pattern. InterViews defines an Action
abstract class thatprovides command functionality. It also defines an
ActionCal | backt enpl ate, paraneterized by action nmethod, that can instantiate

comrandsubcl asses automatically.

The THINK cl ass library [ SynP3b] al so uses comrands to supportundoabl e acti ons.
Conmands in THINK are called "Tasks." Taskobjects are passed along a Chain of

Responsi bility (251) for consunption.

Unidraw s command objects are unique in that they can behave |ikenessages. A
Uni draw command may be sent to anot her object forinterpretation, and the result
of the interpration varies with thereceiving object. Mreover, the receiver may
del egate theinterpretation to another object, typically the receiver's parent
in alarger structure as in a Chain of Responsibility. The receiver of aUnidraw
conmand i s thus conputed rather than stored. Unidraw sinterpretati on nmechani sm

depends on run-tinme type infornmation.
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Copl i en describes howto inplenment functors, objects thatare functions, in C++
[ Cop92]. He achieves a degree oftransparency in their use by overloading the
function call operator(operator()). The Conmand patternis different; its focusis
on mai ntaining a binding between a receiver and a function(i.e., action), not

just maintaining a function

YRel ated Patterns

A Conposite (183)can be used to inplement MacroCommands.
A Memento (316)can keep state the command requires to undo its effect.

A command t hat nust be copied before being placed on the historylist acts as a
Prototype (133).
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| nterpreter

¥ ntent

G ven a | anguage, define arepresention for its gramar along with aninterpreter

that uses the representation to interpret sentences in thel anguage.

YMoti vati on

If a particular kind of problemoccurs often enough, then it m ght beworthwhile
to express instances of the problemas sentences in asinple | anguage. Then you

can build an interpreter that sol ves theprobl emby interpreting these sentences.

For exanpl e, searchingfor stringsthat matchapatternis acomonprobl em Regul ar
expressions are a standard | anguage for specifyingpatterns of strings. Rather
than buil ding customal gorithns to nmatcheach pattern agai nst strings, search

al gorithms could interpret aregul ar expression that specifies a set of strings

to match.

The Interpreter pattern describes howto define a grammar for sinplel anguages,
represent sentencesinthel anguage, andinterpret thesesentences. Inthis exanple,
the pattern descri bes howto define agranmar for regul ar expressi ons, represent

a particular regul arexpression, and how to interpret that regul ar expression.
Suppose the follow ng grammar defines the regular expressions:

expression ::= literal | alternation | sequence | repetition

"(' expression ')

alternation ::= expression '|' expression

sequence ::= expression '& expression

repetition ::= expression '*'

literal ::="a | 'b" | "¢ | ... {'a | '"b" | "¢ | ... }*

The synmbol expressionisthestart synbol, andliteralisaterm nal synmbol defining

si mpl e words.

The Interpreter pattern uses a class to represent each grammar rul e. Synbol s on
theright-handsideof theruleareinstancevari abl es oft hese cl asses. The gramar
above i s represented by five cl asses: anabstract cl ass Regul arExpression andits
four subcl assesLiteral Expression, Alternati onExpression, SequenceExpression,
andRepetiti onExpression. The last three classes define variables thathold

subexpr essi ons.
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RegularExpression r*
Irterpret() :
. . . expression
LiteralExpression SequenceExprassion P S L
-~ axpressiong
Interpret{) Interprat()
literal
repetition - L . . . alternalived
RepetitionExpression AlternationExpression [
{;altern;an'.re?.
Interpret) Interpret()

Every regul ar expression defined by this grammar is represented by anabstract
syntax tree made up of i nstances of these cl asses. Forexanpl e, t he abstract synt ax

tree

Ty
(aSequencuExpresslm

expression] ————
gxprassion? g

-

((aLitemIExpressiﬂn | {aﬁepatitiun Expression w

-,
(-anAlternatiunE xpression

alternation] ®
alternation2 T

|( al.iteralExpression \| | aLiteralExpression \|

Lo ) L g

represents the regul ar expression
raining & (dogs | cats) *

We cancreateaninterpreter for theseregul ar expressi ons by defi ni ngthel nterpret

operation on each subcl ass of Regul ar Expression.Interpret takes as an argunent
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the context in which to interpret theexpression. The context contains the input
string and information onhow nuch of it has been matched so far. Each subcl ass
of Regul ar Expressi oni npl ements I nterpret to matchthe next part of thei nput string

based on the current context. For exanpl e,

Literal Expression wi |l check if the input matches the literal itdefines,
Al'ternati onExpression will check if the input matches any of
itsalternatives,

Repetiti onExpression will check if the input has multiple copies
of expression it repeats,

and so on.

YApplicability

Use the Interpreter pattern when there is a | anguage to interpret, andyou can
represent statenents in the |anguage as abstract syntax trees. The Interpreter

pattern works best when

the gramar is sinple. For conplex granmars, the class hierarchy forthe
grammar becones | arge and unnanageabl e. Tool s such as parsergenerators are

a better alternative in such cases. They can interpretexpressions w thout
bui I ding abstract syntax trees, which can savespace and possibly tine.
efficiency is not a critical concern. The nost efficient interpretersare
usual 'y not inplenmented by interpreting parse trees directlybut by first
translating theminto another form For exanple, regul arexpressions are
often transforned i nto state nmachi nes. But even then,the transl ator can
be inplenented by the Interpreter pattern, sothe pattern is still

appl i cabl e.
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¥YStructure

——ms  Context

ant )
Clie AbsiraclExpression ot

InterpretiContext)

| fk |

TerminalExpression MonterminalExpression

InterpratiContext) Interprat{Contasxt)

YParticipants

Abst ract Expressi on (Regul ar Expr essi on)
O declares an abstract Interpret operationthat is cormonto all nodes
in the abstract syntax tree.
Ter m nal Expression (Literal Expression)

O inplenents an Interpret operation associated with term nal synbols

in the grammar.

0 an instance is required for every termnal symbol in a sentence.
Nont er m nal Expressi on (Al ternati onExpression, RepetitionExpression,
SequenceExpr essi ons)

0 one such class is required for everyrule R::= R R ... R,in the

granmar.

0 nmaintains instance variables of type Abstract Expression for each

of the synbols R, through R,
O inplenents an Interpret operation for nonterminal synmbols in the
grammar. Interpret typically calls itself recursively on the
vari ables representing R through R,.
Cont ext
0 contains information that's global to the interpreter.
Client
O builds (or is given) an abstract syntax tree representing a
particul ar sentence in the | anguage that the grammar defines. The
abstract syntax tree is assenbled frominstances of the
Nont er mi nal Expr essi on and Ter m nal Expressi on cl asses.

O invokes the Interpret operation.
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¥Col | aborati ons

The client builds (or is given) the sentence as an abstract syntaxtree of
Nont er mi nal Expr essi on and Ter m nal Expressi on instances. Thenthe client

initializes the context and invokes the Interpretoperation.

Each Nont er m nal Expressi on node defines Interpret interns ofl nterpret on
each subexpression. The Interpret operation of eachTerm nal Expression
defines the base case in the recursion.

The Interpret operations at each node use the context tostore and access
the state of the interpreter.

¥Consequences

The Interpreter pattern has the follow ng benefits and liabilities:

1. It's easy tochange and extend t he grammar. Because t he pattern uses cl asses
to represent grammar rul es, you canuse i nheritance to change or extend the
grammar. Existing expressionscan be nodified increnentally, and new
expressions can be defined asvariations on old ones.

2. Inplementingthegranmar i s easy, too.Cl asses definingnodesintheabstract
syntax tree have sinilarinpl enentations. These cl asses are easy to wite,
and often theirgeneration can be automated with a conpiler or parser
gener ator.

3. Conplex granmars are hard to nmai ntain. The Interpreter pattern defines at
| east one class for every rulein the grammar (grammar rul es defined using
BNF may requi re mul ti pl ecl asses). Hence grammars cont ai ni ng many rul es can
be hard tomanage and maintain. O her design patterns can be applied
tomtigate the problem(see | npl enmentation).But when the granmar is very
conpl ex, other techni ques such asparser or conpiler generators are nore
appropriate.

4. Adding newways to interpret expressions. The Interpreter pattern nakes it
easi er to eval uate an expression in anewway. For exanple, you can support
pretty printing ortype-checking an expression by defining a newoperation
on t heexpression classes. If you keep creating new ways of interpreting
anexpression, then consider using the Visitor (366) pattern to avoid

changi ng the granmmar cl asses.

Y| npl enent ati on

The Interpreter and Conposite (183) patterns share many inpl ementation issues.

The followi ng i ssuesare specific to Interpreter:
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1. Creatingthe abstract syntax tree. The Interpreter pattern doesn't explain
how to create anabstract syntax tree. In other words, it doesn't address
parsi ng. The abstract syntax tree can be created by a tabl e-driven parser,
by ahand-crafted (usually recursive descent) parser, or directly by
theclient.

2. Defining the Interpret operation.You don't have to define the Interpret
operation in the expressionclasses. If it's conmon to create a new
interpreter, then it's betterto use the Visitor (366) pattern to put
Interpret in aseparate "visitor" object. For exanple, a grammar for a
progr anm ngl anguage wi | | have many operations on abstract syntax trees,
such asas type- checki ng, optim zation, code generation, and soon. It will
bermore likely to use a visitor to avoi d defining these operati ons onevery
grammar cl ass.

3. Sharing terminal synbols with the Flyweight pattern. Gammars whose
sent ences cont ai n many occurrences of a term nal synbol m ght benefit from
sharing a single copy of that synbol. Gamars forconputer prograns are
good exanpl es—each programvari abl e wi || appear in many pl aces t hroughout
the code. Inthe Motivation exanpl e, a sentence can have the term nal synbol

dog (nodel ed by theLiteral Expression cl ass) appearing many tines.

Term nal nodes generally don't store information about their positionin
t he abstract syntax tree. Parent nodes pass t hemwhat ever cont extthey need
during interpretation. Hence there is a distinction betweenshared

(intrinsic) state and passed-in (extrinsic) state, andthe Fl ywei ght (218)

pattern applies.

For exanpl e, each i nstance of Literal Expression for dogrecei ves a cont ext
containing the substring matched so far. And everysuch Literal Expression
does the same thing inits Interpretoperation—it checks whet her the next
part of the input contains adog—no matter where the instance appears in

the tree.

¥Sanpl e Code

Here are two exanples. The first is a conplete exanple in Smalltal kf or checki ng
whet her a sequence matches a regul ar expressi on. Thesecond is a C++ programfor

eval uati ng Bool ean expressions.

The regul ar expressi on matcher tests whether a string is in thel anguage defined
by the regul ar expression. The regul ar expression isdefined by the follow ng

granmmar :

expression ::= literal | alternation | sequence | repetition |

"(' expression ')’
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alternation ::= expression '|' expression

sequence ::= expression '& expression

repetition ::= expression 'repeat’

literal ::='a" | 'b" | "¢ | ... {'a | 'b" | "¢ | ... }*

This granmar is a slight nodification of the Mtivation exanple. Wechanged the
concrete syntax of regular expressions a little, becausesynmbol "*" can't be a
postfix operationin Smalltal k. Sowe use repeat i nstead. For exanpl e, the regul ar

expressi on

(('dog " | 'cat ') repeat & 'weather')

mat ches the input string "dog dog cat weather".

To i mpl ement the matcher, we define the five cl asses descri bed on page 274. The
cl assSequenceExpressi on has instance vari abl esexpressionl and expression2 for
its childrenin the abstract syntax tree. Alternati onExpressionstores its
alternatives in the instance variablesalternativel and alternative2

whi | eRepetiti onExpression holds the expression it repeats in itsrepetition

i nstance vari abl e. Li t eral Expressi on has a conponent s i nstance vari abl e t hat hol ds
a list of objects (probably characters). These represent the literal string that

must match the input sequence.

The match: operation inplements an interpreter for theregul ar expressi on. Each
of the classes defining the abstract syntaxtree inplenments this operation. It
takesi nput State as an argunent representing the current stateof the nmatching

process, having read part of the input string.

This current state is characterized by a set of input streansrepresenting the
set of inputs that the regul ar expression could haveaccepted so far. (This is
roughly equivalent to recording all statesthat the equivalent finite state

automata woul d be in, havingrecogni zed the input streamto this point).

The current state is nost inportant to the repeat operation. For exanple, if the

regul ar expressi on were

'a' repeat
then the interpreter could match "a", "aa","aaa", and so on. If it were

'a' repeat & 'bc'
thenit couldmatch "abc", "aabc", "aaabc", and so on. But if the regul ar expressi on
wer e
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a' repeat & 'abc'

w0

t hen mat chi ng the i nput "aabc" agai nst t he subexpression"'a' repeat" would yield
two input streans, one havi ng matchedone character of the input, and the other
havi ng mat ched twocharacters. Only the streamthat has accepted one character

wi |l match the remaining "abc".

Now we consi der the definitions of match: for each classdefining the regular
expression. The definition forSequenceExpression matches each of its
subexpressi ons insequence. Usually it will elimnate input streans from

i tsinputState.

match: inputState

N expression2 match: (expressionl match: inputState).

An Al ternationExpression will return a state that consi stsof the uni on of states

fromeither alternative. The definition of match: for Alternati onExpression is

match: inputState
| final State |
final State : = alternativel natch: inputState.
final State addAl l: (alternative2 natch: inputState).

A final State

The match: operation for RepetitionExpressiontries to find as many states that

could match as possible:

mat ch: inputState

| aState final State |

aState := inputState.

final State : = inputState copy.

[aState isEnpty]

whi | eFal se:

[aState := repetition match: aState.
final State addAll: aState].

N final State

Its output state usually contains nore states than its input state, because a
Repetiti onExpressi on can match one, two, or manyoccurrences of repetition onthe
i nput state. The outputstates represent all these possibilities, allow ng

subsequent el enent sof the regul ar expressi on to deci de which stateis the correct

one.
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Finally, the definition of match: forLiteral Expression tries to match its
conponent s agai nst eachpossi bl e i nput stream It keeps only those i nput streans

that have amatch:

match: inputState
| final State tStream |
final State : = Set new.
i nput St at e
do:
[:stream | tStream:= stream copy.
(t Stream next Avai | abl e:
conponents size
) = conponents
ifTrue: [final State add: tStreani
].

A final State

The next Avai |l abl e: nmessage advances the input stream Thisis the only match:
operation that advances the stream Notice howthe state that's returned contains
a copy of the inputstream thereby ensuring that matching aliteral never changes
theinput stream This is inportant because each alternative of

anAl t ernati onExpressi on shoul d see identical copies ofthe input stream

Now t hat we' ve defined the classes that make up an abstract syntaxtree, we can
describe howto buildit.Rather than wite a parser for regul ar expressions, we'll
definesonme operations on the Regul ar Expressi on cl asses so thatevaluating a

Smal I tal k expression will produce an abstract syntax treefor the correspondi ng
regul ar expression. That |l ets us use thebuilt-in Smalltalk conpiler asif it were

a parser for regul arexpressions.

To build the abstract syntax tree, we'll need to define"|", "repeat", and "&"
asoperations on Regul ar Expressi on. These operations aredefined in class

Regul ar Expression like this:

& aNode
N SequenceExpression new

expressionl: self expression2: aNode asRExp

r epeat
N RepetitionExpression new repetition: self
| aNode
AN Al ternati onExpression new

alternativel: self alternative2: aNode asRExp

282



Design Patterns: Elenents of Reusable Object-Oriented Software

asRExp

N osel f

The asRExp operation will convert literals intoRegul arExpressions. These

operations are defined in classString:

& aNode
N SequenceExpression new
expressi onl: self asRExp expression2: aNode asRExp
r epeat
N RepetitionExpression new repetition: self
| aNode
AN Al ternati onExpression new
alternativel: self asRExp alternative2: aNode asRExp
asRExp

N Literal Expressi on new conponents: self

I f we defined these operations higher up in the class

hi er ar chy( Sequenceabl eCol | ection in Snmalltal k-80, 1 ndexedCol | ection in

Smal | tal k/V), then they woul dal so be defined for classes such as Array

andOr deredCol | ection. This woul d | etregul ar expressions match sequences of any

ki nd of object.

The second exanpl e i s a syst emfor mani pul ati ng and eval uat i ngBool ean expr essi ons
i mpl emented in C++. The term nal synbol s in thislanguage are Bool ean vari abl es,
that is, the constantstrue and fal se. Nonterm nal synbols representexpressions

containing the operators and, or, andnot. The grammar is defined asfollows?:

Bool eanExp ::= Variabl eExp | Constant | OrExp | AndExp | Not Exp |
"(' Bool eanExp ')’

AndExp ::= Bool eanExp 'and' Bool eanExp

O Exp ::= Bool eanExp 'or' Bool eanExp

Not Exp ::= 'not' Bool eanExp

Constant ::= "true' | 'false'

VariableExp ::="A" | 'B | ... | 'X | 'Y | 'Z

We define two operations on Bool ean expressions. The first, Eval uate, eval uates
a Bool ean expressioninacontextthat assignsatrueor fal seval uetoeachvari abl e.
The secondoperation, Repl ace, produces a new Bool ean expression byreplacing a
vari abl e with an expressi on. Repl ace showshowthe Interpreter pattern can be used
for nmore than just evaluatingexpressions. In this case, it manipul ates the

expression itself.
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We give details of just the Bool eanExp, Vari abl eExp, and AndExp cl asses here.
Cl assesOr Exp and Not Exp are sim|lar to AndExp. The Constant cl ass represents the

Bool ean constants.
Bool eanExp defines theinterface for all classes that defi nea Bool ean expressi on

cl ass Bool eanExp {

public:
Bool eanExp() ;
virtual ~Bool eanExp();
virtual bool Evaluate(Context& = O;
virtual Bool eanExp* Repl ace(const char*, Bool eanExp& = 0;
virtual Bool eanExp* Copy() const = O;
h

The cl ass Context defines a mapping from vari abl es toBool ean val ues, which we
represent with the C++ constantstrue and fal se. Context has thefoll ow ng

interface:

cl ass Context {
public:
bool Lookup(const char*) const;
voi d Assi gn(Vari abl eExp*, bool);
h

A Vari abl eExp represents a naned vari abl e

class Vari abl eExp : public Bool eanExp {

public:
Vari abl eExp(const char*);
virtual ~Variabl eExp();
virtual bool Eval uate(Context&);
virtual Bool eanExp* Repl ace(const char*, Bool eanExp&);
virtual Bool eanExp* Copy() const;
private:
char* _nane;
b

The constructor takes the variable's name as an argunent:

Vari abl eExp: : Vari abl eExp (const char* nane) {

_name = strdup(nane);

Evaluating a variable returns its value in the current context.
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bool Vari abl eExp:: Eval uate (Context& aContext) {

return aCont ext.Lookup(_nane);

Copyi ng a variable returns a new Vari abl eExp:

Bool eanExp* Vari abl eExp:: Copy () const {

return new Vari abl eExp(_nane);

To repl ace a vari able with an expression, we check to see if thevariable has the

same nane as the one it is passed as an argument:

Bool eanExp* Vari abl eExp: : Repl ace ( const char* name, Bool eanExp& exp ) {
if (strcnp(nanme, _nanme) == 0) {
return exp. Copy();
} else {

return new Vari abl eExp(_nane);

An AndExp r epresent s an expr essi on made by ANDi ng t woBool ean expressi ons t oget her.

class AndExp : public Bool eanExp {

public:
AndExp( Bool eanExp*, Bool eanExp*);
virtual ~ AndExp();
virtual bool Eval uate(Context&);
virtual Bool eanExp* Repl ace(const char*, Bool eanExp&);
virtual Bool eanExp* Copy() const;
private:
Bool eanExp* _operandil;
Bool eanExp* _operand2;
H

AndExp: : AndExp (Bool eanExp* opl, Bool eanExp* op2)
{ _operandl = opl; _operand2 = op2; }

Eval uating an AndExp eval uates its operands and returnsthe | ogical "and" of the

results.

bool AndExp:: Eval uate (Context& aContext) {

return _operandl->Eval uat e(aContext) && _operand2->Eval uat e(aContext);

}
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An AndExp i nmpl enments Copy and Repl ace bymeki ng recursive calls on its operands:

Bool eanExp* AndExp:: Copy () const
{ return new AndExp(_operandl->Copy(), _operand2->Copy()); }

Bool eanExp* AndExp:: Repl ace (const char* nane, Bool eanExp& exp) {
return new AndExp(
_oper andl- >Repl ace(nane, exp),

_oper and2- >Repl ace( nanme, exp)

Now we can define the Bool ean expression
(true and x) or (y and (not x))

and evaluate it for a given assignnment of true orfalse to the variables x and

y:

Bool eanExp* expressi on;

Cont ext cont ext;

Vari abl eExp* x = new Vari abl eExp("X");
Vari abl eExp* y = new Vari abl eExp("Y");

expressi on = new O Exp(
new AndExp(new Constant (true), x),

new AndExp(y, new Not Exp(x))
)

cont ext. Assign(x, false);

context.Assign(y, true);

bool result = expression->Eval uate(context);
The expression evaluates to true for this assignnent tox and y. We can eval uate
the expression with adifferent assignnment to the variables sinply by changi ng

t hecont ext .

Finally, we can replace the variable y with a new expressi on andt hen reeval uate
it:

Vari abl eExp* z = new Vari abl eExp("Z");
Not Exp not _z(z);
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Bool eanExp* repl acement = expressi on->Repl ace("Y", not_z);

context. Assign(z, true);

result = repl acenment - >Eval uat e(cont ext) ;

This exanple illustrates an i nportant point about the Interpreterpattern: nany
ki nds of operations can "interpret" a sentence. Ofthe three operations defined
for Bool eanExp, Eval uate fits our idea of what an interpreter should do

nostcl osely—that is, it interprets a programor expression and returns asinple

resul t.

However, Repl ace can be viewed as aninterpreter aswell.It's aninterpreter whose
context is the nane of the vari abl e bei ngrepl aced al ong with the expression t hat
replaces it, and whose resultis a new expression. Even Copy can be thought of
as aninterpreter with an enpty context. It may seema little strange toconsider
Repl ace and Copy to be interpreters, becausethese are just basic operations on
trees. The exanples in Visitor (366) illustrate how all three operations can
berefactored into a separate "interpreter" visitor, thus showi ng thatthe

simlarity is deep.

The Interpreter pattern is nore than just an operation distributedover a class
hi erarchy that uses the Conposite (183) pattern. We consider Evaluate an
interpreter because wethi nk of the Bool eanExp cl ass hi erarchy as representing
al anguage. G ven a simlar class hierarchy for representing autonotivepart
assenblies, it's unlikely we'd consider operations |ikeWight and Copy as
interpreters even though theyare distributed over a class hierarchy that uses
t he Conposi tepattern—we just don't think of autonotive parts as al anguage. It'sa
matter of perspective; if we started publishing gramrars of autonotive parts, then

we coul d consi der operations onthose partstobe ways of i nterpretingthelanguage.

YKnown Uses

The Interpreter pattern is widely used in conpilers inplenented
wi t hobj ect-oriented | anguages, as the Snalltal k conpil ers are. SPECTal kuses t he
pattern to interpret descriptions of input fileformats [Sza92]. The QOCA

constraint-solving toolkituses it to evaluate constraints [ HHW92].

Considered inits nost general form(i.e., an operation distributedover a class
hi erarchy based ont he Conposite pattern), nearly everyuse of t he Conpositepattern
will also containthe Interpreterpattern. But the Interpreter pattern shoul d be
reservedfor thosecases i nwhi chyouwant tothinkof theclass hierarchy as defining

al anguage.
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YRel ated Patterns

Conposi te (183): The abstract syntax treeis aninstance of the Conposite pattern.
Fl ywei ght (218) shows howt o shareterm nal synbol s withintheabstract syntaxtree.
Iterator (289):The interpreter can use an Iterator to traverse the structure

Visitor (366) canbe used to nmaintain the behavior in each node in the abstract

syntaxtree in one class.

For sinplicity, we ignore operator precedence andassune it's the responsibility

of whi chever object constructs thesyntax tree.
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|t erator

¥ ntent

Provide a way to access the el ements of an aggregate objectsequentially w thout

exposing its underlying representation.

YAl so Known As

Cur sor

YMoti vati on

An aggregate object such as a list should give you a way to access itsel enents
wi t hout exposingits internal structure. Moreover, you m ghtwant to traverse the
list indifferent ways, dependi ng on what youwant to acconpli sh. But you probably
don't want to bloat the Listinterface with operations for different traversals,
even i f you coul dantici pate the ones you will need. You nmight al so need to have

nmore t hanone traversal pending on the sane |ist.

The Iterator patternlets you do all this. The key ideainthispatternis to take
the responsibility for access and traversal out ofthe list object and put it into
aniterator object. Thelterator classdefinesaninterfacefor accessingthelist's
el enents. Aniterator object i sresponsiblefor keepingtrack of thecurrentel enent;

that is, it knows which el enents have been traversed al ready.

For exanple, a List class would call for a Listlterator with thefoll ow ng

rel ati onshi p between them

. fist )
List Los Listterator
Count() Farst{)
Append{Element) MNext()
RemowvalElement) IsDone()
Currentitem)
index

Before you can instantiate Listlterator, you nust supply the List totraverse.
Once you have the Listlterator instance, you can access thelist's elements
sequentially. The Currentltemoperation returns thecurrent elenent inthe list,

First initializes the current elenent tothe first el enment, Next advances the
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current el ement tothe nextel enent, and | sDone t ests whet her we' ve advanced beyond

the |l astelement—that is, we're finished with the traversal.

Separating the traversal nmechanismfromthe List object lets us defineiterators
for different traversal policies without enunerating theminthe List interface.
For exanple, FilteringListlterator might provideaccess only to those el enents

that satisfy specific filteringconstraints.

Notice that the iterator and the list are coupl ed, and the client nustknow t hat
itisalist that's traversed as opposed to sone ot heraggregate structure. Hence
the client conmits to a particul araggregate structure. It would be better if we
coul d change t he aggregat ecl ass wi t hout changi ng client code. We can do this by

generalizingthe iterator concept to support polynorphic iteration.

As an exanpl e, let's assume that we al so have a Ski pLi sti npl ementation of alist.
A skiplist [Pug90] is aprobabilistic data structure with characteristics sinmlar
to bal ancedtrees. We want to be able to wite code that works for both List

andSki pLi st obj ects.

We define an AbstractList class that provides a conmon i nterfacefor mani pul ati ng
lists. Simlarly, weneedanabstract Iteratorclassthat definesaconmoniteration
interface. Then we can defineconcrete |terator subcl asses for the different |ist
i mpl enentations. As a result, the iteration nechani sm becones i ndependent of

concr et eaggr egat e cl asses.

Abstractlist Client [———™ lterator

Createlterator) First(}

Count() Nexti)

Appand(ltam) 1sDonef)

Hamove(ltem) Curentftemy)
List [~~~ ~TTTmmTTTTTT ™ Listiterator

SkipList SkipListlterator

The remai ning problemis howto create the iterator. Since we want towite code
that's i ndependent of the concrete List subclasses, wecannot sinply instantiate

a specific class. Instead, we make the | i stobjects responsible for creatingtheir
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corresponding iterator. Thisrequires an operation |like Createlterator through
whi ch clientsrequest an iterator object.

Createlterator is an exanpl e of a factory nethod (see Factory Method (121)). W
use it heretolet aclient aska |ist object for the appropriate iterator. The
Factory Methodapproach give rise to two class hierarchies, one for lists and
anotherfor iterators. The Createlterator factory method "connects" the

t wohi erar chi es.

YApplicability

Use the Iterator pattern

to access an aggregate object's contents w thout exposing its
i nternal representation.

to support multiple traversals of aggregate objects.
to provide a uniforminterface for traversing different
aggregatestructures (that is, to support polynorphic iteration).

¥Structure

Aggregate Herator
Createlferatory) First(}
Nexli)
Is0ane()
f\_\ Currentiteny)
ConcreteAggregate | -
- Concretelterator
Createlterator() ¢
1

relurn new Gnnr:;melmramr{rhm}"ﬁ

YParticipants

Iterator
0 defines an interface for accessing and traversing el enents.
Concretel terator

O inplements the Iterator interface.
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0 keepstrackof thecurrent positioninthetraversal of t he aggregate.
Aggr egat e

0 defines an interface for creating an Iterator object.
Concr et eAggr egat e

O inplenents the Iterator creation interface to return an instance

of the proper Concretelterator

¥Col | aborati ons

A Concretelterator keeps track of the current object in theaggregate and
can conpute the succeeding object in thetraversal

¥YConsequences

The Iterator pattern has three inportant consequences

1. It supportsvariationsinthetraversal of an aggregate. Conpl ex aggr egat es
may be traversed in many ways. For exanpl e, codegeneration and semantic
checki ng i nvol ve traversi ng parse trees. Codegeneration may traverse the
parse tree inorder or preorder.lterators make it easy to change the
traversal algorithm Just replacethe iterator instance with a different
one. You can al so definelterator subclasses to support new traversals.

2. lteratorssinplifythe Aggregateinterface.lterator'straversal interface
obviates the need for asimlarinterfacein Aggregate, thereby sinplifying
the aggregate's interface.

3. Mre than one traversal can be pending on an aggregate. An iterator keeps
track of its own traversal state. Therefore you canhave nore than one

traversal in progress at once.

Y| npl enent ati on

Iterator has many inplenmentation variants and al ternatives. Somei nportant ones
follow The trade-offs often depend on thecontrol structures your |anguage
provi des. Sone | anguages (CLU [L&B6], for exanple) even support this pattern
directly.

1. Who controls the iteration?A fundanental issue is deciding which party
controls theiteration,theiterator or the client that uses the iterator
When the clientcontrols the iteration, the iterator is called an
externaliterator, and when the iterator controls it, the iterator is
aninternal iterator.?dients that use anexternal iterator nust advance t he

traversal and request the nextelenent explicitly fromthe iterator. In
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contrast, the client handsan internal iterator an operation to perform

and the iterator appliesthat operation to every el ement in the aggregate.

External iterators are nore flexible thaninternal iterators. It'seasyto
comparetwo col l ections for equalitywi thanexternaliterator, for exanpl e,
but it'spracticallyinpossiblewithinternaliterators. Internal iterators
are especially weak in a |l anguage | i keC++ t hat does not provi de anonynous
functions, closures, orcontinuations |like Snalltalk and CLCS. But on the
other hand,internal iterators are easier to use, because they define the

iterationlogic for you.

Who defines thetraversal algorithn?Theiterator i s not the only place where
the traversal algorithmcanbe defined. The aggregate mi ght define the
traversal algorithmanduse the iterator to store just the state of the
iteration. We callthis kind of iterator a cursor, since it nmerely points
tothe current position in the aggregate. A client will invoke the

Next operation on the aggregate with t he cursor as an argunent, and t heNext

operation will change the state of thecursor.?

If theiterator is responsible for the traversal algorithm thenit'seasy
tousedifferent iterationalgorithns onthe sane aggregate, andit can al so
be easier to reuse the sane al gorithmon di fferentaggregates. On the ot her
hand, the traversal algorithmm ght need toaccess the private vari ables
of the aggregate. If so, putting thetraversal algorithmin the iterator

vi ol ates the encapsul ati on of theaggregate.

Howrobust istheiterator?lt can be dangerous to nodi fy an aggregate while
you're traversingit.|f elenents are added or del eted fromt he aggregate,
you m ght end upaccessing an elenent twice or mssing it conpletely. A
sinpl esolutionistocopythe aggregate andtraversethe copy, but that'stoo

expensive to do in general.

Arobust iterator ensures that insertions and renoval swon't interferewth
traversal, andit does it w thout copyi ng t heaggregate. There are many ways
to i mpl enent robust iterators. Mostrely on registering theiterator with
the aggregate. On insertion orrenoval, the aggregate either adjusts the
internal state of iteratorsit has produced, or it maintains information

internally to ensureproper traversal.

Kof | er provi des a good di scussi on of how robust iterators areinpl enented
in ET++ [ Kof 93]. Murray di scusses thei npl enentation of robust iterators
for the USL StandardConponents'List class [Mr93].

Addi tional |Iterator operations. The mininmal interfaceto lterator consists

of the operations First, Next, |IsDone, and Currentltem “Soneaddi ti onal
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operations m ght prove useful. For exanpl e, orderedaggregates can have a
Previ ous operation that positions the iteratorto the previous elenent. A
Ski pTo operation is useful for sorted orindexed collections. SkipTo
positions the iterator to an objectmatching specific criteria.

Usi ng pol ynorphic iterators in C++. Pol ynorphic iterators have their cost.
They require the iteratorobject to be allocated dynam cally by a factory
met hod. Hence t heyshoul d be used onl y when t here's a need f or pol ynor phi sm

Ot herwi seuse concrete iterators, which can be all ocated on the stack.

Pol ynor phic iterators have anot her drawback: the client is responsiblefor
deleting them This is error-prone, because it's easy to forgetto free a
heap-al |l ocated iterator object when you're finished with it.That's

especially l'i kely when there are nultiple exit points in anoperation. And

if an exception is triggered, the iterator object wllnever be freed.

The Proxy (233) patternprovi des arenmedy. W can use ast ack-al | ocat ed pr oxy
as a stand-in for thereal iterator. The proxydeletes the iterator inits
destructor. Thus when the proxy goes outof scope, the real iterator wll
get deallocated along with it. Theproxy ensures proper cleanup, even in
the face of exceptions. Thisis an application of the well-known C++

techni que "resourceal locationis initialization" [ ES90]. The Sanpl e Code

gi vesan exanpl e.

Iterators may have privil eged access. An iterator can be viewed as an
extensi on of the aggregate thatcreated it. The iterator and t he aggregate
aretightly coupl ed. Wecan express this closerelationshipin C++ by making
the iterator afriend of its aggregate. Then you don't need todefine
aggregate operati ons whose sole purpose is to let iteratorsinplenent

traversal efficiently.

However, such privil eged access can make defini ng newtraversal sdifficult,
sinceit'll require changingthe aggregate interface to addanother friend.
To avoid this problem the Iterator class can incl udeprotected operations
for accessing i nportant but publiclyunavail abl e nenbers of the aggregate.
I'terator subclasses (and only | terator subcl asses) may use t hese protected

operations to gainprivileged access to the aggregate.

Iterators for composites. External iterators can be difficult toinplenent
over recursiveaggregate structures like those in the Conposite (183)

pattern, because a positioninthe structure may span many | evel s of nest ed
aggregates. Therefore an external iterator has to store a pat ht hrough t he
Composite to keep track of the current object. Sonetinesit's easier just

to use an internal iterator. It can record thecurrent position sinply by
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callingitself recursively, thereby storingthepathinplicitlyinthecall

st ack.

I f the nodes in a Conposite have an interface for noving froma nodeto its
siblings, parents, and children, then a cursor-based iteratormay offer a
better alternative. The cursor only needs to keep track of t he current node;

it can rely on the node interface to traverse theConposite.

Conposites often need to be traversed in nore than one way.
Pr eor der, postorder, inorder, and breadth-first traversals are conmon. You

cansupport each kind of traversal with a different class of iterator.

8. Null iterators.A Nulllterator is a degenerate iterator that's hel pful
forhandl i ng boundary conditions. By definition, a Nulllterator is always

donewithtraversal; that is, its|sDone operation al wayseval uatestotrue.

Nul l'lterator can nake traversing tree-structured aggregates

(1'i keConposi tes) easier. At each point inthe traversal, we ask thecurrent
elenment for an iterator for its children. Aggregate elenentsreturn a
concrete iterator as usual. But |eaf elenents return aninstance of
Nulll'terator. That lets us inplenent traversal over theentire structure

in a uniformway.

¥Sanpl e Code
We'll look at the inplenentation of a sinple List class, which is partof our
foundation library (Appendix C) .W'Ill show two Iterator inplenentations, one

for traversing the List infront-to-back order, and another for traversing
back-to-front (thefoundation |library supports only the first one). Then we show
howt ouse theseiterators and howtoavoidcomittingtoaparticularinplenmentation.
After that, we change the design to make sureiterators get del eted properly. The
|l ast exanple illustrates aninternal iterator and conpares it to its external

counterpart.

1. List and Iterator interfaces.First let's look at the part of the List
interfacethat' srelevant toinplenmentingiterators. Refer to (Appendix C).

for the full interface.

tenpl ate <class ltenr

class List {

public:

Li st (l ong size = DEFAULT_LI ST_CAPACI TY) ;
| ong Count () const;

Item& Get (1 ong index) const;
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The List class provides a reasonably efficient way tosupport iteration
throughits publicinterface. It's sufficient toinplement bothtraversals.
So there's no need to give iteratorsprivileged access to the underlying
data structure; that is, theiterator classes are not friends of List. To
enabl etransparent use of the different traversals we define an

abstractlterator class, which defines the iterator interface.

tenpl ate <class ltenr

class lterator {

public:

virtual void First() = 0O;

virtual void Next() = O;

virtual bool |sDone() const = O;
virtual ItemCurrentlten() const = 0;
pr ot ect ed:

Iterator();

}
2. lterator subclass inplenmentations.Listlterator i s asubclass of Iterator.

tenpl ate <class Itenr

class Listlterator : public Iterator<itenr {
public:

Listlterator(const List<ltenpr* alist);
virtual void First();

virtual void Next();

virtual bool |sDone() const;

virtual Item Currentlten() const;

private:

const List<ltenmp* _list;

long _current;

}s

The i npl ementation of Listlterator is straightforward. Itstores the List

along with an index _current intothe list:

tenpl ate <class ltenr
Listlterator<itemp::Listlterator ( const List<ltems* aList )

_list(aList), _current(0) { }

First positions the iterator to the first el enent:
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tenplate <class Itenr
void Listlterator<itenp::First ()

{ _current = 0; }

Next advances the current el enent:

tenplate <class Itenr
void Listlterator<ltens::Next ()

{ _current ++; }

| sDone checks whether the index refers to an elenent w thinthe List:

tenpl ate <class ltenp
bool Listlterator<liten::1sDone () const

{ return _current >= _list->Count(); }

Finally, Currentltemreturnstheitemat thecurrent index.If theiteration

has already term nated, then we throw anlteratorQutOf Bounds excepti on:

tenpl ate <class Itenr
ItemListiterator<itenp::Currentltem () const {
if (1sDone()) {

throw I teratorQut Of Bounds;

}

return _|list->CGet(_current);

}

The inpl enentation of ReverselListlterator is identical, except itsFirst
operation positions _currentto the end of the list, and Next

decrenments_current toward the first item

3. Using the iterators.Let's assune we have a List of Enployee objects, and
we would like to print all the contained enpl oyees. TheEnpl oyee cl ass
supports this with a Printoperation. To print the list, we define a
Pri nt Enpl oyeesoperation that takes aniterator as an argunment. |t uses the

iteratorto traverse and print the list.

voi d PrintEnpl oyees (Iterator<Enpl oyee*>& i) {

for (i.First(); !i.lsDone(); i.Next()){
i.Currentltem()->Print();

}

}

Since we have iterators for both back-to-front and front-to-backtraversals,

we can reuse this operation to print the enpl oyees in bothorders.

297



Design Patterns: Elenents of Reusable Object-Oriented Software

Li st <Enpl oyee*>* enpl oyees;

11

Li stlterator<Enpl oyee*> forward(enpl oyees);

Rever seLi st terator<Enpl oyee*> backwar d( enpl oyees) ;
Pri nt Enpl oyees(forward);

Pri nt Enpl oyees(backwar d) ;

4. Avoiding commitment to a specific list inplenmentation.Let's consider how
a skiplist variation of List would affectour iteration code. A SkiplLi st
subcl ass of Li st nmust provide a SkipListlterator thatinplenments the
Iterator interface. Internally, theSkipListlterator has to keep nore than
just an index todo the iteration efficiently. But sinceSkipListlterator
conforms to thelterator interface, the PrintEnpl oyees operationcan al so

be used when the enployees are stored in a SkipListobject.

Ski pLi st <Enpl oyee*>* enpl oyees;

11

Ski pLi st |t erator<Enpl oyee*> iterator(enpl oyees);
Print Enpl oyees(iterator);

Al though this approach works, it would be better if we didn't have to
committo a specific List inplenmentation, nanel ySki pLi st. W can i ntroduce
an AbstractListclass to standardize the list interface for different

l'istinplementations. List and Ski pLi st beconesubcl asses of AbstractList.

To enabl e polynmorphic iteration, AbstractList defines afactory nmethod
Createlterator, which subclasses override toreturn their correspondi ng

iterator:

tenpl ate <class Itenr

class AbstractList {

public:

virtual lterator<litenr* Createlterator() const = 0;

11
b

An alternative would be to define a general mixin classTraversabl e that
defines the interface for creating aniterator. Aggregate classes can m x

inTraversabl e to support polynorphic iteration.
Li st overrides Createlterator to return alListlterator object:

tenplate <class Itenr
Iterator<litenmp* List<ltenp::Createlterator () const {

return new Listlterator<litenmp(this);
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Now we're in a position to wite the code for printingthe enpl oyees

i ndependent of a concrete representation.

/1 we know only that we have an AbstractLi st

Abst ract Li st <Enpl oyee*>* enpl oyees;

/1

|t erat or <Enpl oyee*>* iterator = enpl oyees->Createlterator();
Print Enpl oyees(*iterator);

delete iterator;

5. Making sure iterators get deleted.Notice that Createlterator returns a
newly all ocatediterator object. We're responsible for deletingit. If we
forget,then we've created a storage | eak. To nmake life easier for
clients,we'll provide an IteratorPtr that acts as a proxy for aniterator.

It takes care of cleaning up the Iterator objectwhen it goes out of scope.

IteratorPtr i s al ways al | ocat ed on t hestack. 3C++ automatical |y t akes care
of callingits destructor, which deletes the real iterator.lteratorPtr

overl oads bot hoperator-> andoperator* in such a way that an IteratorPtr
can betreated just likeapointer toaniterator. The menmbers oflteratorPtr

are all inplenented inline; thus they can incur nooverhead.

tenplate <class Itenr

class lteratorPtr {

public:

IteratorPtr(lterator<itenp* i): _i(i) { }
~lteratorPtr() { delete _i; }
Iterator<ltems* operator->() { return _i; }
Iterator<ltenm>& operator*() { return *_i; }
private:

/1 disallow copy and assignnent to avoid
/1 multiple deletions of _i:
IteratorPtr(const IteratorPtr&);
IteratorPtr& operator=(const IteratorPtré&);
private:

Iterator<ltemp* _i;

H
IteratorPtr lets us sinplify our printing code:

Abstract Li st <Enpl oyee*>* enpl oyees;
/1

IteratorPtr<Enpl oyee*> iterator(enpl oyees->Createlterator());
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Print Enpl oyees(*iterator);

6. An internal Listlterator.As a final exanple, let's | ook at a possible
i mpl enentati on of aninternal or passive Listlterator class. Here the

iteratorcontrolstheiteration, andit applies anoperationtoeachel ement.

The issueinthiscaseishowto paranmeterizetheiterator withtheoperation
we want to performon each el ement. C++ does not supportanonynous functions
or closures that other | anguages provide for thistask. There are at | east
two options: (1) Pass in a pointer to afunction (global or static), or (2)
rely on subclassing. In the firstcase, the iterator calls the operation
passedtoit at each point intheiteration. Inthe second case, theiterator

calls an operationthat a subclass overrides to enact specific behavior.

Neither option is perfect. Often you want to accurul ate state duri ngthe
iteration, and functions aren't well-suited to that; we woul d haveto use
static variables to remenber the state. Anlterator subclass provides us
wi th a conveni ent pl ace tostore the accunul ated state, like in aninstance

vari abl e. Butcreatingasubclassfor everydifferent traversal i s nore work.

Here's a sketch of the second option, which uses subcl assing. W callthe

internal iterator a ListTraverser.

tenplate <class Itenr

class ListTraverser {

public:

Li st Traverser (List<ltenp* aList);

bool Traverse();

prot ect ed:

virtual bool Processlten(const Item&) = O;
private:

Listlterator<itenr _iterator;

}s

Li st Traverser takes a List instance as a paraneter.Internally it uses an
external Listlterator to do thetraversal. Traverse starts the traversal
and cal | sProcesslitem for each item The internal iterator can choose
totermnate a traversal by returning false fronProcessltem Traverse

returns whether the traversalterm nated prematurely.

tenpl ate <class ltenr
Li st Traverser<ltemnp:: Li st Traverser ( List<ltenp* aList )

_iterator(aList) { }

tenpl ate <class ltenr
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bool ListTraverser<itenp:: Traverse () {

bool result = fal se;

for ( _iterator.First(); ! iterator.lsDone(); iterator.Next() ) {
result = Processltem(_iterator.Currentlten());

if (result == false) {

br eak;

}

}

return result;

}

Let's use a ListTraverser to print the first 10enpl oyees fromour enpl oyee
list. Todo it we have to subcl assLi st Traverser and override Processltem

Wecount the nunber of printed enployees in a _count instancevariable.

cl ass PrintNEnpl oyees : public ListTraverser<Enpl oyee*> {
public:

Pri nt NEnpl oyees( Li st <Enpl oyee*>* alList, int n)

Li st Traver ser <Enpl oyee*>(ali st),

_total(n), _count(0) { }

prot ect ed:

bool Processlten( Enpl oyee* const&);

private:
int _total;
int _count;
}

bool Print NEnpl oyees: : Processltem ( Enpl oyee* const& e) {
_count ++;

e->Print();

return _count < _total;

}
Here's how Print NEnpl oyees prints the first 10 enpl oyeeson the |ist:

Li st <Enpl oyee*>* enpl oyees;
/1
Pri nt NEnpl oyees pa(enpl oyees, 10);

pa. Traverse();

Not e howt he cli ent doesn't specifytheiterationloop. Theentireiteration
| ogi c can be reused. This is the primary benefit of aninternal iterator.
It's abit nore work than an external iterator,though, because we have to

define a new class. Contrast this withusing an external iterator:
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Li stlterator<Enpl oyee*> i (enpl oyees);

int count = O;

for (i.First(); !'i.lsDone(); i.Next()) {
count ++;

i.Currentltem()->Print();

if (count >= 10) {

br eak;

}

}

Internal iterators can encapsulate different kinds of iteration.
Forexanpl e, FilteringListTraverser encapsul ates aniteration that

processes only itens that satisfy a test:

tenpl ate <class ltenr

class FilteringListTraverser {

public:

Fi lteringListTraverser(List<ltemr* aList);
bool Traverse();

pr ot ect ed:

virtual bool Processlten(const Item&) = O;
virtual bool Testlten{const Item& = 0;
private:

Listlterator<itenr _iterator;

}s

This interface is the same as Li st Traverser's except for anadded Testltem
nmenber function that defines the test. Subcl asses override Testltemto

specify the test.
Traverse deci des to continue t he traversal based on t heout cone of the test:

tenpl ate <class ltenr

void FilteringListTraverser<itene:: Traverse () {
bool result = fal se;

for (_iterator.First();! _iterator.lsDone();_iterator.Next() ) {
if (Testltem(_iterator.Currentlten())) {

result = Processltem(_iterator.Currentlten());
if (result == false) {

br eak;

}

}

}

return result;
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Avariant of this class could define Traversetoreturnifat | east oneitem

satisfies the test.®

¥YKnown Uses

Iterators are comon i n obj ect-oriented systens. Most collectionclass |libraries

offer iterators in one formor another.

Here's an exanpl e fromthe Booch conmponents [ Boo94], apopul ar collection class
library. It provides bothafixedsize(bounded) and dynani cal | y gr owi ng (unbounded)
i mpl enent ati on of aqueue. The queue interface is defined by an abstract Queue
cl ass. Tosupport pol ynorphic iteration over the different queuei npl ement ati ons,

thequeueiterator isinplementedintheterns of theabstract Queuecl assinterface.
This variation has the advantage thatyou don't need a factory nmethod to ask the
gueue inplenmentations fortheir appropriate iterator. However, it requires the
interface of theabstract Queue class to be powerful enough to inplenent the

iteratorefficiently.

Iterators don't have to be defined as explicitly in Smalltal k. Thestandard

coll ection classes (Bag, Set, Dictionary, OrderedCol |l ection, String, etc.) define
aninternal iterator nethoddo:, whi chtakes abl ock (i.e., closure) as an argunent.
Each el ement in thecollection is bound to the | ocal variable in the block; then
t he bl ocki s executed. Smalltal k al soincludes aset of Streamcl asses t hat support
aniterator-likeinterface. ReadStreamis essentially anlterator, and it can act
as an external iterator for all thesequential collections. There are no standard

external iterators fornonsequential collections such as Set and Dictionary.

Pol ymor phic iterators and t he cl eanup Proxy descri bed earlier areprovi ded by t he
ET++ cont ai ner classes [ WGVB8]. The Uni dr awgr aphi cal editing framework cl asses

use cursor-basediterators [VL90].

bj ect Wndows 2. 0 [ Bor94] provides a class hierarchy ofiterators for containers.
You can iterate over different contai nertypes in the sane way. The Cbj ect W ndow
iteration syntax relies onoverloading the postincrenment operator ++ to advance

theiteration.

YRel ated Patterns

Conposite (183):Iterators are often applied to recursive structures such

asConposi tes.
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Factory Method (121): Pol ynorphiciteratorsrely onfactory nethodstoinstantiate

t heappropriate Iterator subcl ass.

Merment o (316) i softenusedinconjunctionwiththelterator pattern. Aniteratorcan
use amenmento to capture the state of aniteration. Theiteratorstores the nmenento

internally.

2Booch refers to external and internal iterators asactive and passive
iterators, respectively[Boo94]. Theterns "active" and "passi ve" describetherole

of the client, notthe level of activity in the iterator.

SCursors are a sinple exanple of the Menento (316) pattern and share many of

i tsinplementation issues.

“We can nmake this interfaceeven smaller by nerging Next, |sDone, and Currentltem
into asingle operation that advances to the next object and returns it. Ifthe
traversal i sfinished, thenthisoperationreturnsaspecialvalue (0, for instance)

that marks the end of the iteration.

®You can ensure this at conpile-time just by declaringprivate new and del ete

operators. An acconpanyi ngi npl ementation isn't needed.

®The Traverse operationin these exanpl esi s a Tenpl at e Met hod (360) with prinitive

operations Testltem andProcessltem
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Medi at or

¥ ntent

Defi ne an obj ect t hat encapsul at es howa set of objects interact. Medi at or pronot es
| oose coupling by keeping objects fromreferring toeach other explicitly, and

it lets you vary their interactioni ndependently.

YMoti vati on

bj ect -ori ent ed desi gn encour ages t he di stri buti on of behavi oranong obj ects. Such
distribution can result in an object structurewith many connections between

objects; in the worst case, every objectends up knowi ng about every other.

Though partitioning a systeminto nmany objects generally enhancesreusability,

proliferating interconnections tend to reduce it again.Lots of interconnections
make it | ess likelythat an object can workw t hout the support of ot hers—the system
acts as though it werenonolithic. Moreover, it can be difficult to change the
syst em sbehavi or i n any significant way, since behavior is distributed anongmany
objects. As a result, you may be forced to define many subcl assesto custoni ze

the system s behavior.

As an exanpl e, consider the inplenentation of dialog boxes in agraphical user
interface. A dialog box uses a windowto present acollection of w dgets such as

buttons, nenus, and entry fields, asshown here:
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Oten there are dependenci es between the widgets in the dialog. Forexanple, a
button gets di sabled when a certain entry field is enpty. Selecting an entry in
a list of choices called a list boxm ght change the contents of an entry field.
Conversely, typing textinto the entry field mght automatically select one or
nor ecorresponding entries in the Iist box. Once text appears in the entryfield,
ot her buttons nay becorme enabled that let the user do sonethingwith the text,

such as changing or deleting the thing to which it refers.

Di fferent dial og boxes will have different dependenci es bet weenw dgets. So even
t hough di al ogs di spl ay the sane ki nds of w dgets,they can't sinply reuse stock
wi dget cl asses; they have to becustoni zedtoreflect di al og-speci fi c dependenci es.
Cust om zi ng them ndi vidual | y by subcl assing wi || be tedi ous, since nany cl asses

ar ei nvol ved.

You can avoid these probl ens by encapsul ati ng col | ective behavior in aseparate
medi at or object. A nediator is responsible forcontrolling and coordi nating the
interactions of a group of objects. The nedi ator serves as an internediary that
keeps objects in the groupfromreferring to each other explicitly. The objects

only know thenedi ator, thereby reducing the nunber of interconnections.
For exanpl e, Font Di al ogDi rector can be t he nedi at or bet ween t he wi dgets i n a di al og

box. A FontDi al ogDi rector object knowsthe widgets in a dialog and coordi nates

their interaction. It acts asa hub of conmmunication for w dgets:
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alistBox

aClient

w direcior
director

aFﬂntDi&lugDirectnr\

e

aButton

director

anEntryField

director

The fol l owi ng i nteracti on di agramillustrates howthe objects cooperate tohandl e

a change in a list box's selection:

Mediator Colleagues
aClient aFontDialogDirector alistBox  anEntryField
ShowDialog()
J W hs

- idgetChanged()

GetSelection|)

SetText()

o

Here's the successi on of events by which a list box's sel ection passesto an entry
field:

The list box tells its director that it's changed.
The director gets the selection fromthe |ist box.

The director passes the selection to the entry field.

PN PR

Nowt hat the entry field contai ns sone text, the directorenabl es button(s)

for initiating an action (e.g., "dem bold," "oblique").
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Not e how t he director nedi ates between the |list box and the entry field. Wdgets
communi cate wi t h each other only indirectly, throughthedirector. They don't have
to know about each other; all they knowis thedirector. Furthernore, because the
behavior is localized in one class,it can be changed or replaced by extending

or replacing that class.

Here's how t he Font Di al ogDi rector abstraction can be integrated into acl ass

l'ibrary:
DialogDirector - diractor Widget
ShowDialog() Changedi) ™H------ directar-=WidgetChangad{this)
Create Widgets()
Widgetlhanged| 1Widget)

ListBox EntryField
) . list
FonlDialogDirector B GetSelection() SetText()
CreateWidgets{) field
WidgetUhanged{Widget)

Di al ogDirector i s an abstract cl ass that defines the overal | behavi or of a di al og.
Cients call the ShowDi al og operation to display the dial og onthe screen.
CreateWdgets is an abstract operation for creating thew dgets of a dial og.

W dget Changed i s another abstract operation;w dgets call it to informtheir

di rector that they have changed. Di al ogDi rect or subcl asses overri de Creat eW dgets

tocreatethe properw dgets, andthey overri de W dget Changed t o handl e t he changes.

YApplicability

Use the Medi ator pattern when

a set of objects communi cateinwell-definedbut conpl ex ways. Theresul ti ng
i nt erdependenci es are unstructured and difficult tounderstand.

reusing an object is difficult because it refers to and communi cateswi th
many ot her objects.

a behavior that's distributed between several classes should
becustom zabl e without a |ot of subclassing.
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¥YStructure

mediator

Colleague

A

ConcreteMediator — l ConcreteColleaguel ’-.

Mediator |aa

ConcreteColieague2

A typical object structure nmight |ook |ike this:

aColleague

mechator

aColleague

aColleague

—a mediator

aConcreteMediator
k L ] ] .___J

]

T
aColleague
mediator #—

aColleague

meadiator

YParticipants

Medi at or (Di al ogDi rector)
0 defines an interface for

Concr et eMedi at or (Font Di al ogDirector)
i mpl enent s cooper ati ve behavi or by coordi nati ng Col | eague obj ect s.

conmuni cating with Col | eague objects.

0]
0 knows and naintains its coll eagues.

Col | eague cl asses (ListBox, EntryField)
0 each Colleague class knows its Medi ator object.

0 each col | eague conmuni cates withits nedi at or whenever it woul d have

ot herwi se comuni cated with anot her coll eague.
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¥Col | aborati ons

Col | eagues send and recei ve requests froma Medi ator obj ect. Thenedi at or
i mpl enents the cooperative behavi or by routing requestsbetween the

appropriate coll eague(s).

YConsequences

The Medi ator pattern has the follow ng benefits and drawbacks:

1. It limts subclassing. A nediator |ocalizes behavior that ot herw se woul d
be di stributed anongseveral objects. Changing this behavior requires
subcl assi ng Medi atoronly; Coll eague cl asses can be reused as is.

2. 1t decouples colleagues. A nedi ator pronotes | oose coupling between
col | eagues. You can varyand reuse Col | eague and Medi ator cl asses
i ndependent | y.

3. It sinplifies object protocols.A nediator replaces many-to-nmany
interactions with one-to-nanyinteractions between the nmediator and its
col | eagues. One-to-nmanyrel ationshi ps are easi er to understand, nmaintain,
and extend.

4. |t abstracts howobjects cooperate. Maki ng nedi ati on an i ndependent concept
and encapsulating it in anobject lets you focus on how objects interact
apart fromtheirindividual behavior. That can help clarify how objects
interact in asystem

5. It centralizes control.The Mediator pattern trades conplexity of
interactionfor conplexityinthe nedi ator. Because a nmedi at or encapsul at es
protocols, it can beconenore conpl ex than any individual colleague. This

can make the nediatoritself a nonolith that's hard to maintain.

Y| npl enent ati on

The followi ng inplenmentation issues are relevant to the Mediatorpattern:

1. Orittingthe abstract Medi ator cl ass. There's no need to defi ne an abstract
Medi at or cl ass when col | eagueswork with only one nedi ator. The abstract
coupling that theMedi ator class provides |ets coll eagues work with
di fferent Mediatorsubcl asses, and vice versa.

2. Col | eague- Medi at or commruni cation. Col | eagues have to communi cate with
t hei r medi at or when an event of i nterest occurs. One approachistoinpl ement
the Medi ator as anObserver using the Cbserver (326) pattern.

Col | eaguecl asses act as Subjects, sending notifications to the
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nedi at orwhenever they change state. The nedi at or responds by propagati ng

theeffects of the change to other coll eagues.

Anot her approach defines a specialized notification interface i nMedi ator
that | ets col | eagues be nore direct intheir conmuni cation. Snal ltal k/Vfor
W ndows uses a form of del egation: When comuni catingwith the nedi ator,
a col | eague passes itself as an argunent, al |l owi ngt he medi ator toidentify
the sender. The Sanpl e Code uses thisapproach, and the Smalltal k/V

i mpl enentation is discussed further inthe Known Uses.

¥Sanpl e Code

W'l | useaDialogDrector toinplenent thefont di al ogbox showninthe Motivation.

The abstract class DialogDirector definesthe interface for directors.

class DialogDirector {

public:

virtual ~DialogDirector();

virtual void ShowDi al og();

virtual void Wdget Changed(W dget*) = O;
pr ot ect ed:

Di al ogDirector();

virtual void CreateWdgets() = O;

H

Wdget is the abstract base class for w dgets. Aw dget knows its director.

class Wdget {

public:

W dget (Di al ogDi rector*);

virtual void Changed();

virtual void Handl eMbuse(MbuseEvent & event);
11

private:

Di al ogDi rector* _director;

b

Changed cal | s the director's W dget Changedoperati on. Wdgets call W dget Changed

on their director toinformit of a significant event.

void Wdget:: Changed ()
{ _director->Wdget Changed(this); }
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Subcl asses of Dial ogDirector overrideW dget Changed to affect the appropriate
wi dgets. The wi dget passes areferencetoitself as an argunent to W dget Changedto
let the director identify the wi dget that changed. D al oghirector subcl asses

redefine theCreateWdgets pure virtual to construct the w dgets in thedial og.

The Li st Box, EntryFi el d, and Button aresubcl asses of Wdget for specialized user
interfaceel ements. ListBox provides a GetSel ecti onoperation to get the current

sel ection, and EntryFi el d' sSet Text operation puts newtext into the field.

class ListBox : public Wdget {

public:

Li st Box(Di al ogDi rector*);

virtual const char* GetSelection();

virtual void SetlList(List<char*>* |istltens);
virtual void Handl eMbuse(MbuseEvent & event);

11
}s

class EntryField : public Wdget {

public:

EntryFi el d(Di al ogDi rector*);

virtual void SetText(const char* text);
virtual const char* GetText();

virtual void Handl eMbuse(MbuseEvent & event);

11
b

Button is a sinple w dget that calls Changedwhenever it's pressed. This gets done

inits inmplenmentati on of Handl eMouse:

class Button : public Wdget {

public:

But t on( Di al ogDi rector*);

virtual void SetText(const char* text);
virtual void Handl eMbuse(MbuseEvent & event);

1
}s

voi d Button:: Handl eMouse (MuseEvent & event) {
11

Changed() ;

}
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The Font Di al ogDi rector cl ass nmedi ates between w dgets in thedial og box.

Font Di al ogDi rector is a subcl ass of Di al ogDi rector:

class FontDi al ogDirector : public DialogDirector {
public:

Font Di al oghDi rector();

virtual ~FontDi al ogDirector();
virtual void W dget Changed(W dget *);
prot ect ed:

virtual void CreateWdgets();
private:

Button* _ok;

Button* _cancel;

Li st Box* _fontList;

EntryFi el d* _f ont Nare;
}

Font Di al ogDi rector keeps track of the widgets it displays.
ItredefinesCreateWdgets to create the widgets and initialize itsreferences to

them

voi d FontDi al ogDirector:: CreateWdgets () {

_ok = new Button(this);

_cancel = new Button(this);

_fontList = new ListBox(this);

_fontName = new EntryFi el d(this);

/1 fill the listBox with the available font nanes

/1 assenble the widgets in the dial og
}

W dget Changed ensures that the wi dgets work together properly:

voi d FontDi al ogDi rector:: Wdget Changed ( Wdget* theChangedWdget ) {
i f (theChangedWdget == _fontList) {

_font Nane- >Set Text (_f ont Li st ->Get Sel ection());

} else if (theChangedWdget == _ok) {

/1 apply font change and dism ss dial og

11

} else if (theChangedWdget == _cancel) {
/1 dismss dial og

}

}
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The conpl exity of Wdget Changed i ncreases proportionallyw th the conplexity of
t he di al og. Lar ge di al ogs ar e undesi rabl e f or ot her reasons, of course, but medi at or

conplexity mght mtigate thepattern's benefits in other applications.

YKnown Uses

Bot h ET++ [WGMB8] and the THINK Ccl ass |ibrary [ SymB3b] usedirector-1ike objects

in dialogs as nediators between w dgets.

The application architecture of Smalltalk/V for Wndows is based on anedi at or
structure [LaL94]. In that environnment, anapplication consists of a Wndow
containing a set of panes. Thelibrary contains several predefined Pane objects;
exanpl es incl udeText Pane, ListBox, Button, and so on. These panes can be used
wi t hout subcl assing. An application devel operonly subcl asses from Vi ewanager,
a class that's responsi bl e for doi ngi nter-pane coordination. ViewManager is the
Medi at or, and each paneonly knows it s vi ewnmanager, whi chis consi deredthe"owner"

of thepane. Panes don't refer to each other directly.

The follow ng object diagram shows a snapshot of an application atrun-tine:

aListBox

&

aViewManager

* lextPane

aTextPane

WTIET

aButton

Smel | tal k/V uses an event mechani sm for Pane- Vi emanager conmuni cati on. A pane
generates an event when it wants to getinformati on fromthe nedi ator or when it
wants to i nformthe medi at ort hat sonet hi ng si gni fi cant happened. An event defines
a synbol (e.g.,#select) that identifies the event. To handl e the event, theview
manager registers a nmethod selector with the pane. This selectoris the event's

handler; it will be invoked whenever the event occurs.

The foll owi ng code excerpt shows how a ListPane object gets created insidea
Vi ewManager subcl ass and how Vi ewManager regi st ers an event handl erfor t he #sel ect

event :
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sel f addSubpane: (ListPane new
paneNane: 'nyLi st Pane';
owner: self;

when: #select perform #listSelect:).

Anot her application of the Mediator pattern is in coordinating conpl exupdat es.
An exanpl e i s t he ChangeManager cl ass nmentioned i n Gbserver (326). ChangeManager
medi at es bet weensubj ects and observers to avoid redundant updates. When an

obj ect changes, it notifies the ChangeManager, whichinturn coordi nates t heupdate

by notifying the object's dependents.

A simlar application appears in the Unidraw draw ngfranmework [VL90] and uses
a cl ass cal | ed CSol ver toenforce connectivity constraints between "connectors."
bj ects i ngraphi cal editors can appear to stick to one another in differentways.
Connectors are useful in applications that mai ntainconnectivity automatically,
like diagrameditors and circuit designsystens. CSol ver is a nmedi ator between
connectors. It solves theconnectivity constraints and updates the connectors'

positions toreflect them

YRel ated Patterns

Facade (208) differsfrom Mediator in that it abstracts a subsystem of objects
to providea nore convenient interface. Its protocol is unidirectional; thatis,
Facade objects make requests of the subsystem classes but notvice versa. In

contrast, Medi ator enabl es cooperative behaviorthat col |l eague objects don't or

can't provide, and the protocol ismultidirectional.

Col | eagues can conmuni cate with the nmedi ator using the Observer (326) pattern.
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Menment o

¥ ntent

W thout violating encapsul ation, capture and externalize an object'sinterna

state so that the object can be restored to this state later

YAl so Known As

Token

YMoti vati on

Sonetimesit'snecessarytorecordtheinternal state of anobject. Thisisrequired
when i npl ementi ng checkpoi nts and undo nmechani snmsthat | et users back out of
tentative operations or recover fronerrors. You nmust save state information
somewhere so that you canrestore objects to their previous states. But objects
normal | yencapsul ate some or all of their state, making it inaccessible toother
obj ects and inpossible to save externally. Exposing this statewould violate
encapsul ation, which can conpromi se the application'sreliability and

extensibility.

Consi der for exanpl e a graphi cal editor that supports connectivitybetween objects.
A user can connect two rectangles with a line, andthe rectangl es stay connect ed
when the user noves either of them Theeditor ensures that the Iine stretches

to maintain the connection

A wel | -known way to nmaintain connectivity rel ationshi ps betweenobjects is with
a constraint-solving system W can encapsul ate thisfunctionality in a
Const rai nt Sol ver obj ect. Constrai nt Sol ver records connections as they are made
and gener at esmat hemati cal equations that describe them It sol ves these
equat i onswhenever the user nakes a connection or otherw se nodifies thedi agram
Constraint Sol ver uses the results of its calculations torearrange the graphics

so that they nmintain the proper connections.

316



Design Patterns: Elenents of Reusable Object-Oriented Software

Supporting undo in this applicationisn't as easy as it may seem Anobvi ous way
to undo a nove operationistostorethe original distancenpved and nove t he obj ect
back an equival ent distance. However, thisdoes not guarantee all objects wll
appear where they did before. Suppose there is some slack in the connection. In
that case, sinplynmoving the rectangle back to its original |ocation won't

necessaril yachi eve the desired effect.

I ngeneral, the ConstraintSolver's publicinterface m ght beinsufficient toallow
precise reversal of its effects on otherobjects. The undo nechani sm nust work
nore cl osely withConstraintSol ver to reestablish previous state, but we should

al soavoi d exposing the ConstraintSolver's internals to the undo nmechani sm

We can solve this problemwith the Memento pattern. A nenmento i s an object that
st ores a snapshot of thei nternal state of anot her obj ect —the nenento' s origi nator.
The undo nechanismw Il request a nmementofromthe originator when it needs to
checkpoint the originator'sstate. The originator initializes the nemento with
information thatcharacterizes its current state. Only the originator can store

andretrieveinformationfromthe mement o—t he nenento i s "opaque" t oot her obj ects.

In the graphical editor exanple just discussed, the ConstraintSolver can actas

an originator. The foll owi ng sequence of events characterizes theundo process:

1. The editor requests a nenmento fromthe ConstraintSol ver as asi de-ef fect
of the nove operation.

2. The Constraint Sol ver creates and returns a nenento, an i nstance of acl ass
SolverState in this case. A SolverState nemento contains datastructures
that describe the current state of the ConstraintSol ver'sinternal
equat i ons and vari abl es.

3. Later when the user undoes the nove operation, the editor gives
theSol ver State back to the Constraint Sol ver.

4. Based on the information in the Sol verState, the ConstraintSol verchanges
itsinternal structurestoreturnits equations andvariabl estotheir exact

previ ous state.

This arrangenent lets the ConstraintSol ver entrust other objects wththe
information it needs to revert to a previous state w thoutexposing its internal

structure and representations.
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YApplicability

Use the Menento pattern when

a snapshot of (sonme portion of) an object's state nmust be saved sothat it
can be restored to that state later, and

a direct interface to obtaining the state woul d exposei npl enent ati on
details and break the object's encapsul ation.

¥YStructure

Originater | | Memento ‘ﬂ“{“} Carataker
SetMemento{Maemento mj P GelStatel)
CreateMemanto{) ¢ ' SelState()
state E E state
T T
1 1
1 1
1 1
T . )
returm new Memento{state) state = m-=GetState()

YParticipants

Merment o ( Sol ver St at e)

0 storesinternal stateof the Originator object. The menento may store
as muchor aslittle of theoriginator's internal state as necessary
at its originator's discretion.

O protects agai nst access by objects other than the originator.
Merment os have effectively two interfaces. Caretaker sees a narrow
interfacetothe Menento—it canonly passthenenmentotoother objects.
Oiginator, in contrast, sees a wide interface, one that lets it
access all thedatanecessarytorestoreitselftoitspreviousstate.
Ideally, only the originator that produced the menento woul d be
permitted to access the menento's internal state.

Ori gi nator (Constraint Sol ver)

O creates a nenento containing a snapshot of its current internal
state.

O wuses the nmenmento to restore its internal state.

Car et aker (undo mechani sm
O is responsible for the menmento's saf ekeepi ng.

O never operates on or exam nes the contents of a nenento.
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¥Col | aborati ons

A car et aker requests a nenento froman originator, holds it for atime, and
passes it back to the originator, as the foll ow nginteraction diagram

illustrates:

aCaretaker anOriginator aMemento

1
CreateMementol) |
new Mementa !

SetState()

SetMemento{aMemento) o

GetState()

=
I

e

L

Somet i mes the caretaker won't pass the nemento back to the
ori gi nat or, because the ori gi nat or m ght never needtorevert toanearlier

state.

Merent os ar e passi ve. Only the ori gi nator that created a nenentow | | assi gn
or retrieve its state.

¥Consequences

The Menento pattern has several consequences:

1. Preserving encapsul ation boundaries. Menento avoi ds exposi ng i nformati on
that only an origi nat or shoul dmanage but that nust be stored neverthel ess
out si de the originator. The pattern shiel ds other objects frompotentially
conpl ex Originatorinternals, thereby preserving encapsul ati on boundari es.

2. It sinplifies Originator.ln other encapsul ati on-preserving designs,
Origi nator keeps theversions of i nternal statethat clients haverequested.
That puts allthe storage managerment burden on Originator. Having
clientsnmanagethe statethey ask for sinplifies Originator and keepsclients
fromhaving to notify originators when they're done.

3. Using nenmentos m ght be expensive. Menentos m ght incur considerable
overhead i f Originator must copyl arge anounts of information to store in

the memento or if clientscreate andreturn nementos tothe originator often
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M

Here ar

enough. Unl essencapsul ating and restoring Originator state i s cheap, the
patternm ght not be appropriate. See the discussion of increnentality in
t hel npl ement ati on section.

Defi ni ng narrow and wi de i nterfaces. It may be difficult in sone | anguages
to ensure that only theoriginator can access the nenento's state.

Hi dden costs in caring for menentos. Acaretaker i s responsiblefor deleting
the nementos it cares for. However, t he caretaker has noi dea hownmnuch state
isinthenenmento. Hence an ot herwi se | i ght wei ght car et aker mi ght i ncur | ar ge

st oragecosts when it stores nmenentos.

npl enent ati on

e two issues to consider when inplenenting the Memento pattern:

Language support. Menent os have two i nterfaces: a wi de one for originators
and a narrowone for other objects. ldeally the inplenmentation | anguage
wi | | support two | evel s of static protection. C++ | ets you do this bynaki ng
the Originator a friend of Memento and making Menento's w dei nterface

private. Only the narrowinterface shoul d be decl aredpublic. For exanpl e:

class State;

class Originator {

public:

Menent o* CreateMenento();

voi d Set Menent o(const Menent o*);

11

private:

State* _state;

/1 internal data structures

11
}s

class Menento {

public:

/1 narrow public interface

virtual

private:

~Menent o() ;

/1 private menbers accessible only to Oiginator

friend class Oiginator;

Menment o() ;

void SetState(State*);

State* GetState();
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/1
private:
State* _state;

11
}s

2. Storing increnmental changes.\Wen nenentos get created and passed back to
their originator in apredictabl e sequence, then Menento can save just the

i ncrenental change to the originator's internal state.

For exanpl e, undoabl e commands in a history |list can use nmenent os t oensure
that commands are restored to their exact state when they'reundone (see
Command (263)). The history |ist defines aspecific order i n which commands
can be undone and redone. That neansnmenment os can store just theincrenental
change t hat a conmand makesrat her than the full state of every object they
affect. I ntheMdtivation exanple given earlier, the constraint solver can
store only thosei nternal structures that changeto keeptheline connecting
t herectangl es, as opposed to storing the absolute positions of

t heseobj ect s.

¥Sanpl e Code

The C++ code gi ven here il l ustrat es t he Constrai nt Sol ver exanpl e di scussed earli er.
Weuse MoveConmand obj ects (see Command (263)) to (un)dothe translation of a
graphi cal object fromone position to another. The graphical editor calls the
command' s Execute operationto nove a graphi cal object and Unexecute to undo the
nove. The command stores its target, the distance noved, and an instance

of Constrai nt Sol ver Menment o, a menent o contai ni ng state fromtheconstrai nt sol ver.

cl ass G aphic;

/| base class for graphical objects in the graphical editor

cl ass MoveCommand {

public:

MoveConmand( G aphi c* target, const Point& delta);
voi d Execute();

voi d Unexecute();

private:

Constrai nt Sol ver Menent o* _state;

Point _delta;

Graphic* _target;

H
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The connection constraints are established by the cl assConstraintSolver. Its key
nmenber function isSolve, which solves the constraints registered wththe
AddConstrai nt operation. To support undo, ConstraintSolver's state can be
externalized withCreateMenmento i nto a Constraint Sol ver Menment oi nst ance. The
constraint solver can be returned to a previousstate by calling SetMnento.
Constrai nt Sol veris a Singleton (144).

cl ass Constraint Sol ver {

public:

static ConstraintSolver* Instance();

voi d Sol ve();

voi d AddConstrai nt (

Graphi c* start Connection, G aphic* endConnection
)

voi d RenoveConstrai nt (

G aphi c* startConnection, G aphic* endConnection
)i

Const r ai nt Sol ver Menent o* Cr eat eMenent o() ;

voi d Set Menent o( Const r ai nt Sol ver Menent o*) ;
private:

/1 nontrivial state and operations for enforcing

/1 connectivity semantics };

cl ass Constraint Sol ver Menent o {
public:

virtual ~Constraint Sol ver Menento();
private:

friend class Constraint Sol ver;
Const r ai nt Sol ver Merrent o() ;

/] private constraint solver state

b

G ven theseinterfaces, we cani npl emrent MoveConmand nenber sExecut e and Unexecut e
as follows:

voi d MoveConmmand: : Execute () {

Constraint Sol ver* sol ver = ConstraintSol ver::|nstance();
_state = sol ver->CreateMenento();

/] create a nmenmento

_target->Mve(_delta);

sol ver->Sol ve();

}

voi d MoveConmand: : Unexecute () {
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Constraint Sol ver* sol ver = ConstraintSol ver::|nstance();
_target->Mve(-_delta);

sol ver - >Set Menent o( _state);

/] restore solver state

sol ver - >Sol ve();

}

Execut e acquires a Constraint Sol ver Menrent o nenent obefore it noves the graphic.
Unexecut e noves t he graphi cback, setstheconstraint solver'sstatetotheprevious

state, andfinally tells the constraint solver to solve the constraints.

YKnown Uses

The precedi ng sanpl e code i s based on Unidraw s support for connectivitythrough
its CSol ver class [VL90].

Col l ections in Dylan [App92] provide an iteration interface thatreflects the
Mermento pattern. Dylan's collections have the notion of a"state" object, which
is a menento that represents the state of theiteration. Each collection can
represent the current state of theiteration in any way it chooses; the
representation is conpletelyhidden fromclients. The Dylan iteration approach

m ght be translatedto C++ as fol |l ows:

tenplate <class Itenr

class Collection {

public:

Col | ection();

IterationState* Createlnitial State();

voi d Next(lterationState*);

bool |sDone(const IterationState*) const;

Item Currentltenm(const lterationState*) const;
IterationState* Copy(const IterationState*) const;
voi d Append(const Iteng);

voi d Renpove(const Iteng);

11
b

Createlnitial Statereturnsaninitializedlterati onState object for thecollection.
Next advancesthe state object to the next position in the iteration; it

effectivelyincrenentstheiterationindex. | sDonereturnstrueif Next has advanced
beyondthel ast el ementinthecol | ection. Currentltemdereferencesthe stateobject
and returns the element inthe collectionto whichit refers. Copy returns a copy

of the given state object. This isuseful for marking a point in an iteration.
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Gven a class Itenfype, we can iterate over a collection ofits instances as

foll ows™:

class ItenType {
public:
voi d Process();

11
}s

Col | ecti on<ltenilype*> aCol | ecti on;
IterationState* state;

state = aCollection.Createlnitial State();
while (!aCollection.lsDone(state)) {

aCol l ection. Currentlten(state)->Process();
aCol | ection. Next (state);

}

del ete state;
The menento-based iteration interface has two interesting benefits:

1. More than one state can work on the same collection. (The saneis true of
the Iterator (289) pattern.)

2. It doesn't require breaking a collection's encapsul ati onto support
iteration. The mementois only interpreted by thecollectionitself; noone
el se has access to it. Other approaches toiteration require breaking
encapsul ation by making iterator classesfriends of their collection
classes (seelterator (289)). Thesituationisreversedinthenenento-based

i mpl enmentation: Collectionis a friend of thelteratorState.

The QOCA constraint-solving toolkit stores increnental information i nnenentos
[HHW92]. dients can obtain a nemento that characterizesthe current solution
to a systemof constraints. The memento contai nsonly those constraint variabl es
that have changed since the lastsolution. Usually only a small subset of the
sol ver's vari abl eschanges for each newsol ution. This subset is enough to return
thesol ver to the preceding solution; reverting to earlier solutionsrequires
restoring nementos fromthe intervening solutions. Hence youcan't set nementos

inany order; QOCArelies on a history nechanismtorevert to earlier solutions.

YRel ated Patterns

Command (263) : Conmands can use menent os t o mai nt ai nst at e f or undoabl e oper ati ons.

Iterator (289): Menentoscan be used for iteration as described earlier.
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"Note that our exanpl e del etes the state object at the end of the iteration.
But delete won't get called if Processltemthrows an exception, thus creating
garbage. This is a problemin C++ but not in Dyl an, which has garbage col | ection.

We di scuss a solution to this probl emon page 299.
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bser ver

¥ ntent

Define a one-to-many dependency between objects so that when oneobj ect changes

state, all its dependents are notified and updatedautonatically.

YAl so Known As

Dependent s, Publish-Subscri be

YMoti vati on

A common side-effect of partitioning a systeminto a collection ofcooperating
classes is the need to maintain consistency betweenrel ated objects. You don't
want to achi eve consi stency by making thecl asses tightly coupl ed, because that

reduces their reusability.

For exanpl e, many graphical user interface toolkits separate thepresentational
aspects of the user interface fromthe underlyi ngapplication data [ KP88, LVC89,
P+88, WGMB8]. d asses defining application data and presentations can be

reusedi ndependently. They can work together, too. Both a spreadsheet objectand
bar chart object can depict information in the sane application dataobject using
di fferent presentations. The spreadsheet and the bar chartdon't know about each
other, thereby letting you reuse only t he one youneed. But they behave as t hough
t hey do. When the user changes theinformation in the spreadsheet, the bar chart

reflects the changesi medi ately, and vice versa.
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Thi s behavior inplies that the spreadsheet and bar chart are dependenton t he data
obj ect and therefore should be notified of any change inits state. And there's
no reasonto lint the number of dependentobjects totwo; there may be any nunber

of different user interfacesto the sane data.

The Observer pattern describes how to establish these rel ationships. The key
objects in this pattern are subject andobserver. A subject nay have any nunber
of dependent observers. All observers are notifi ed whenever t he subj ect under goesa
change in state. I nresponse, each observer will query the subjectto synchronize
its state with the subject's state.

This kind of interaction is also known aspublish-subscribe. The subject is the
publ i sher ofnotifications. It sends out these notifications w thout having to
knowho its observers are. Any nunber of observers can subscribe toreceive

notifications.

YApplicability

Use the Cbserver pattern in any of the follow ng situations:

When an abstraction has two aspects, one dependent on the

ot her. Encapsul ating these aspects in separate objects lets you vary
andreuse them i ndependently.

Wien a change to one object requires changing others, and youdon't know
how many objects need to be changed.

When an obj ect should be able to notify other objects without

maki ngassunpti ons about whot hese obj ects are. | not her words, youdon'twant

these objects tightly coupl ed.
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¥YStructure

Subject ohservers e Observer
Aftach{Observer) Update()
- gt . & y - o
DetachiObsarver) for all 0 in observers 'fh
Motify() o -—-- - --  o-=Update()
]
ConcreteObserver
. subject b arState =
ConcreteSubject Update O--|- - Obsenersiate
oncretesubject (. pdated) subject->GetState()
GetState(} @---1—1 ) . ™ obsanvarstate
SetState(} retum subjectState
subjectState

YParticipants

Subj ect
0 knows its observers. Any number of Cbserver objects may observe a
subj ect .
0 provides aninterface for attachi ng and detachi ng Gbserver obj ects.
oser ver
0 defines an updating interface for objects that shoul d be notified
of changes in a subject.
Concr et eSubj ect
O stores state of interest to ConcreteCbserver objects.
O sends a notification to its observers when its state changes.
Concr et eCbser ver
O maintains a reference to a ConcreteSubject object.
O stores state that should stay consistent with the subject's.
O inplenents the Cbserver updating interface to keep its state
consistent with the subject's.

¥Col | aborati ons

Concr et eSubj ect notifies its observers whenever a changeoccurs that could
make its observers' state inconsistent with its own.

After beinginformedof achangeinthe concrete subject, aConcreteObserver
obj ect may query the subject for information. ConcreteCObserver uses this

information to reconcile its state with thatof the subject.
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The following interaction diagramillustrates the collaborationsbetween

a subject and two observers:

aConcreteSubject aConcreteObserver anotherConcreteObserver
L SetState()
MNotify() L
Update{) |
- GetState()
Update(} |
GetState()
L

Not e how t he Cbserver object that initiates the change request post pones
itsupdateuntil it getsanotificationfromthe subject.Notifyisnot always
called by the subject. It can be called by anobserver or by another kind
of object entirely. The Inplenmentationsection discusses sonme conmon

vari ations.

¥Consequences

The Observer pattern | ets you vary subj ects and observersi ndependently. You can
reuse subjects without reusing theirobservers, and vice versa. It lets you add

observers wi t houtmodi fying the subject or other observers.
Further benefits and liabilities of the Cbserver pattern include thefollow ng:

1. Abstract coupling between Subject and Qbserver. All a subject knows i s t hat
it has a list of observers, eachconforming to the sinple interface of the
abstract Cbserver class. The subj ect doesn't knowthe concrete class of any
observer. Thus t hecoupl i ng bet ween subj ects and observers i s abstract and

m ni mal .

Because Subject and Observer aren't tightly coupled, they can bel ong
todifferent |layers of abstraction in a system A |ower-|evel subjectcan
communi cate and i nform a higher-1level observer, thereby keeping
thesystem s layering intact. |If Subject and Observer are | unpedt oget her,

then the resulting object nust either span two | ayers (andviolate the
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| ayering), or it nmust be forced to live in one layer orthe other (which

m ght conproni se the | ayering abstraction).

2. Support for broadcast communi cation.Unlike an ordinary request, the
notification that a subject sendsneedn't specify its receiver. The
notification is broadcastautomatically to all interested objects that
subscribedtoit. Thesubject doesn't care hownany i nt erest ed obj ects exi st;
its onlyresponsibility is to notify its observers. This gives you the
freedonto add and renove observers at any tinme. It's up to the observer
tohandl e or ignore a notification.

3. Unexpected updat es. Because observers have no know edge of each other's
presence, they canbe blind to the ultimte cost of changi ng the subject.
Aseem ngl yi nnocuous operati ononthe subject may cause a cascade of updat es
t oobservers andt heir dependent objects. Moreover, dependency criteri athat
aren't well-defined or maintai ned usually | ead to spuriousupdates, which

can be hard to track down.

This problemis aggravated by the fact that the sinple update
prot ocol provi des no details on what changed in the subject.
W t hout addi ti onal protocol to hel p observers di scover what changed, they

maybe forced to work hard to deduce the changes.

Y| npl enent ati on

Several issues related to the inplenmentation of the dependencynechani sm are

di scussed in this section.

1. Mapping subjects to their observers. The sinpl est way for a subject to keep
track of the observers itshould notify is to store references to them
explicitly in thesubject. However, such storage nay be t oo expensi ve when
there arenmany subjects and few observers. One solution is to trade space
fortime by using an associ ati ve |l ook-up (e.g., a hashtabl e) to maintainthe
subj ect -t o- observer mappi ng. Thus a subj ect wi t h no observersdoes not i ncur
st orage overhead. On the other hand, this approachi ncreases the cost of
accessing the observers.

2. (bserving nore than one subject.It m ght nake sense i n sone situations for
an observer to depend onnore than one subj ect. For exanple, a spreadsheet
may depend on nor et han one data source. It's necessary to extend the Update
interfaceinsuchcasestolet the observer knowwhi ch subject i s sendi ngt he
notification. The subject cansinply passitself as aparaneterinthe Update

operation, thereby letting the observer know whi chsubject to exam ne.
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3. Who triggers the update?The subject and its observers rely on the
notification mechani smtostay consi stent. But what object actually calls
Notify to trigger theupdate? Here are two options:

a. Have state-setting operations on Subject call Notify after
theychange the subject's state. The advantage of this approach is
thatclients don't have to renenber to call Notify on the subject.
Thedi sadvant age i s that several consecutive operations wll
causeseveral consecutive updates, which may be inefficient.

b. Make clients responsible for calling Notify at the right tine.The
advantage hereisthat theclient canwait totrigger the updateuntil
after a series of state changes has been made, therebyavoi ding
needl ess i nt er nedi at e updat es. The di sadvantage i s thatclients have
an added responsibility totrigger the update. That makes errors nore
likely, since clients mght forget to call Notify.

4. Dangling references to deleted subjects.Deleting a subject should not
produce dangling references in itsobservers. One way to avoid dangling
references is to nake thesubject notify its observers as it is deleted so
that they can resettheir referencetoit. Ingeneral, sinply deletingthe
observers is not an option, because other objects may reference them or
they may beobserving other subjects as well.

5. Making sure Subject state is self-consistent beforenotification.It's
important to make sure Subject state is self-consistent beforecalling
Noti fy, because observers query the subject for its currentstate in the

course of updating their own state.

This self-consistency rule is easy to violate unintentionally whenSubject
subcl ass operations call inherited operations. For exanple,the
notificationinthe foll owi ng code sequence is trigged when thesubject is

in an inconsistent state:

voi d MySubj ect:: Operation (int newal ue) {
Based assSubj ect : : Oper ati on( newval ue) ;

/1 trigger notification

_nyl nstVar += newval ue;

/] update subclass state (too late!)

}

You can avoid this pitfall by sending notifications fromtenpl ate nmet hods
(Tenpl ate Method (360)) in abstract Subjectclasses. Define a primtive
operation for subclasses to override, and nakeNotify the | ast operation
inthetenplate method, whichwi |l ensure thatthe object is sel f-consistent

when subcl asses overri de Subjectoperations.

void Text::Cut (TextRange r) {
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Repl aceRange(r); /1 redefined in subcl asses

Notify();

}

By the way, it's always a good idea to document which Subject

operationstrigger notifications.

Avoi di ng observer-specific update protocols: the pushand pull nodels.

| npl enent ati ons of the Cbserver pattern often havethe subject broadcast
additional information about the change. Thesubject passes this
informati on as an argunment to Update. The anountof information may vary

wi del y.

At one extrene, which we call the push nodel, the subjectsends observers
detail ed i nformati on about the change, whether theywant it or not. At the
other extreme is the pull nodel;the subject sends nothing but the nost

m ni mal notification, andobservers ask for details explicitly thereafter.

The pul | npbdel enphasi zes t he subj ect' s ignorance of its observers, whereas
t he push nodel assunes subj ect s knowsonet hi ng about t hei robservers' needs.
The push nodel mi ght make observers | ess reusabl e, because Subj ect cl asses
make assunpti ons about Observer classes thatm ght not always be true. On
the ot her hand, the pull nodel may bei neffici ent, because Cbserver cl asses

must ascertain what changedw thout help fromthe Subject.

Speci fying nmodifications of interest explicitly.You can inprove update
efficiency by extending the subject'sregistration interface to allow

regi stering observers only forspecific events of interest. Wen such an
event occurs, the subjectinforns only those observers that have regi stered
interest in thatevent. One way to support this uses the notion ofaspects
for Subject objects. To registerinterest in particular events, observers

are attached to theirsubjects using

voi d Subject:: Attach(Cbserver*, Aspect& interest);

where i nterest specifies the eventof interest. At notificationtinme, the
subj ect supplies the changedaspect to its observers as a paraneter to the

Updat e operation. Forexanpl e:

voi d Qoserver:: Update(Subject*, Aspect& interest);

Encapsul ati ng conpl ex update semanti cs. Wien t he dependency rel ationship
bet ween subj ects and observers isparticularly conplex, an object that
mai ntai ns these rel ati onshi ps m ghtbe required. W call such an object a

ChangeManager. |t spurposeistomnim zetheworkrequiredtonmake observers
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reflect achange in their subject. For exanple, if an operation
i nvol veschanges to several interdependent subjects, you m ght have
toensure that their observers arenotifiedonly after all thesubjects have

been nodified to avoid notifying observers nore thanonce.

ChangeManager has three responsibilities:

1. It maps a subject to its observers and provides an interface
tomai ntain this nmapping. This elininates the need for subjects to
mai ntai nreferences to their observers and vice versa.

It defines a particular update strategy.

3. It updates all dependent observers at the request of a subject.

The f ol | owi ng di agramdepi cts a si npl e ChangeManager - based i npl enent ati on
of the Cbserver pattern. There are two specialized

ChangeManager s. Si npl eChangeManager is naiveinthat it al ways updates all
observers of each subject. |In contrast, DAGChangeManager handl es

di rect ed-acyclicgraphs of dependenci es between subjects and their
observers. ADAGChangeManager is preferable to a Sinpl eChangeManager when
an observerobserves nore than one subject. In that case, a change in two
or noresubjects m ght cause redundant updates. The DAGChangeManager
ensur est he observer receives just one update. SinpleChangeManager isfine

when mul tiple updates aren't an issue.

Subject ChangefManager
Attach(Observero) o SUBISCIS | e gisterSubject, Observer) | C0S0erS
Dretach{Observer) i Unregistern/Sulyect, Observer)
Matify(y o i chman MNatifi)
i : Subject-Observer mapping
1
1
chman-z Nn[i.‘y}_l\* : /k
1
|
chiman—»Register(this, o]
SimpleChangeManager DAGChangeManager

RegisterSubject, Observer) Register|Subject, Observer)

Update|Subject]

Unregister Subject, Observer)
Matity(} ¢

Unregizter|Subject, Observer)
Motityl)

forall s in subjects =

forall o in s.chsavears
o—=Update(s)

mark all observers to update
update all marked chearvers
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ChangeManager i s ani nstance of the Medi ator (305) pattern. I ngeneral there
is only one ChangeManager, and it is knowngl obally. The Singleton (144)

pattern woul d beuseful here.

9. Conbi ning the Subject and Cbserver classes.Class libraries witten in
| anguages that |lack multiple inheritance(like Snalltalk) generally don't
define separate Subject and Cbservercl asses but conmbine their interfaces
in one class. That |lets youdefine an object that acts as both a subject
and an observer withoutnultiple inheritance. In Snalltal k, for exanple,
t he Subj ect andQbserver interfaces are defined in the root class Object,

maki ng themavailable to all classes.

¥Sanpl e Code

An abstract class defines the Oohserver interface:
cl ass Subj ect;

cl ass Observer {

public:

virtual ~ Observer();

virtual void Update(Subject* theChangedSubject) = 0;
prot ect ed:

oserver ();
H

This inplementation supports nultiple subjects for each observer. Thesubject
passed to the Update operation | ets the observerdetermnm ne whi ch subject changed
when it observes nore than one.

Simlarly, an abstract class defines the Subject interface:

cl ass Subject {

public:
virtual ~Subject();
virtual void Attach(Cbserver*);
virtual void Detach(Cbserver*);
virtual void Notify();

pr ot ect ed:
Subj ect () ;

private:

Li st <Cbserver*> *_observers;

}s
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voi d Subject::Attach (Cbserver* o) { _observers->Append(0); }

voi d Subject:: Detach (Cbserver* o) { _observers->Renove(0); }

void Subject::Notify () {

Li stlterator<Cbserver*> i (_observers);

for (i.First(); !'i.lsDone(); i.Next()) {
i.Currentlten()->Update(this);

Cl ockTiner is a concrete subject for storing andmai ntaining the tinme of day. It
notifies its observers every second. d ockTi mer provides the interface for

retrieving individualtinme units such as the hour, mnute, and second.

class C ockTinmer : public Subject {

public:
C ockTi mer () ;
virtual int GetHour();
virtual int GetMnute();
virtual int GetSecond();
void Tick();

H

The Tick operation gets called by aninternal tiner atregular interval sto provide
an accuratetine base. Tickupdatesthe C ockTiner'sinternal state andcallsNotify

to inform observers of the change:

void O ockTinmer::Tick () {
/1 update internal tinme-keeping state
11
Notify();

Now we can define a class Digital dock that displays thetinme. It inherits its
graphical functionality froma Wdgetcl ass provided by a user interface toolKkit.
The Observer interface ismxed into the Digital Cock interface by inheriting

fronObserver.

class Digital dock: public Wdget, public Observer {
public:

Di gi tal A ock(C ockTi mer*);

virtual ~Digital dock();

virtual void Update(Subject*);

/1 overrides Cbserver operation
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virtual void Draw();
/1 overrides Wdget operation;
/1 defines how to draw the digital clock
private:

Cl ockTi ner* _subj ect;

}s

Digital Cock::Digital dock (O ockTiner* s) {
_subject =s;

_subj ect->Attach(this);

DigitalCock:: Digital Cock () {
_subj ect ->Det ach(this);

Before the Update operation draws the clock face, it checksto make sure the

notifying subject is the clock's subject:

voi d Digital Cock::Update (Subject* theChangedSubject) {
if (theChangedSubj ect == _subject) {
Draw();

void Digital Cock::Draw () {

/1 get the new val ues fromthe subject

int hour = _subject->GetHour();
int mnute = _subject->GetMnute();

Il etc.

/1 draw the digital clock

An Anal ogC ock class can be defined in the sane way.

cl ass Anal ogd ock : public Wdget, public Cbserver {
public:

Anal ogd ock(C ockTi nmer*);

virtual void Update(Subject*);

virtual void Draw();

/1
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b

The fol | owi ng code creates an Anal ogC ock and abi gi tal G ock that al ways showt he

same tine:

C ockTiner* tinmer = new O ockTi ner;
Anal ogd ock* anal ogCl ock = new Anal ogC ock(tiner);
Di gital C ock* digital dock = new Digital C ock(tiner);

Whenever the timer ticks, the two clocks will be updatedand will redisplay

t henmsel ves appropriately.

¥YKnown Uses

The first and perhaps best-known exanple of the Cbserver pattern appearsin
Smal I tal k Model /View Controller (MC), the user interface framework in the
Smel | t al kenvi ronment [ KP88]. MVC s Mddel class plays the role of Subject, while
Viewis the base cl ass for observers. Smalltalk, ET++ [ WGMB8], and the THI NK cl ass
library [ SynB3b] provide ageneral dependency nechani sm by putting Subject and

bserver interfacesin the parent class for all other classes in the system

O her user interface toolkits that enploy this pattern arelnterViews [LVC89],
the AndrewTool kit [P+88], and Unidraw [ VL90]. InterVi ewsdefines Observer and
bservabl e (for subjects) classes explicitly. Andrewcalls them"view' and "data
object," respectively. Unidrawsplits graphical editor objects into View (for

observers) and Subjectparts.

YRel ated Patterns

Medi at or (305): Byencapsul ati ng conpl ex updat e semanti cs, the ChangeManager acts

asnedi at or between subj ects and observers.

Si ngl eton (144): The ChangeManager nmay use the Singleton pattern to make it

uni queand gl obal |y accessi bl e.
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State

¥ ntent

Al'l ow an object to alter its behavior whenits internal state changes. The object

wi || appear to change its class.

YAl so Known As

bj ects for States

YMoti vati on

Consi der a class TCPConnection that represents a network connection. A
TCPConnecti on object can be in one of several different states:Established,

Li steni ng, C osed. When a TCPConnect i on obj ect recei vesrequest s fromot her obj ect s,
it responds differently depending on itscurrent state. For exanple, the effect
of an Open request depends onwhether the connection is inits Cl osed state or
its Establishedstate. The State pattern describes how TCPConnecti on can

exhi bitdi fferent behavior in each state.

The key idea in this pattern is to introduce an abstract class call edTCPSt ate
to represent the states of the network connection. TheTCPState cl ass decl ares
an interface common to all classes thatrepresent different operational states.
Subcl asses of TCPSt at ei npl ement state-specific behavior. For exanple, the

cl assesTCPEst abl i shed and TCPO osed i npl enent behavi or particular to

t heEst abl i shed and Cl osed states of TCPConnecti on.

. state
TCPConneaction s - TCPState
Open() O------ I Opeani)
Closa() | Closef)
Acknowledgea() i Acknowladge(|
1
T
1
|
state-=0pen() = |
TCPEstablished TCPListen TCPClosed
Open{) Cpen() Open(}
Closel) Closel) Closea()
Acknowladge() Acknowladna(} Acknowiedge()
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The class TCPConnection maintains a state object (an instance of asubcl ass of
TCPSt ate) that represents the current state of the TCPconnection. The cl ass
TCPConnecti on del egates all state-specificrequests to this state object.
TCPConnecti on uses its TCPSt at esubcl ass i nst ance t o performoperations particul ar

to the state of theconnection.

Whenever the connection changes state, the TCPConnecti on obj ect changes the state
object it uses. Wen t he connecti on goes fronmestablished to cl osed, for exanpl e,

TCPConnectionw || replace itsTCPEstablishedinstance with a TCPCl osed i nst ance.

YApplicability

Use the State pattern in either of the follow ng cases:

An obj ect's behavi or depends on its state, and it nmust change itsbehavi or
at run-time depending on that state.

Operations have | arge, nultipart conditional statenents that depend ont he
object's state. This state i s usually represented by one or noreenuner at ed
constants. Often, several operations will contain thissame conditional
structure. The State pattern puts each branch of theconditional in a
separate class. This lets you treat the object' sstate as an object inits

own right that can vary independently fronother objects.

¥Structure

Context .;:_:’ fate w| State
Reguest() 9 Handle()
1
1
l * _____
state->Handle() |
ConcreteStateA ConcreteStateB

Handle() Handie{)

YParticipants

Cont ext (TCPConnecti on)
0 defines the interface of interest to clients.
0O nmmintains an instance of a ConcreteState subclass that defines

thecurrent state.
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State (TCPSt ate)
0 definesaninterface for encapsul ati ngthe behavi or associated with
aparticul ar state of the Context.
ConcreteState subcl asses (TCPEst abl i shed, TCPLi sten, TCPCd osed)
0 each subcl ass i npl ements a behavi or associated with a state ofthe
Cont ext .

¥Col | aborati ons

Cont ext del egates state-specific requests to the current
Concr et eSt at eobj ect .

A context may pass itself as an argument to the State objecthandling the
request. This lets the State object accessthe context if necessary.
Context istheprimaryinterfacefor clients. dientscanconfigureacontext
with State objects. Once a context is configured, its clients don't have
to deal with the State objects directly.

Ei ther Context or the ConcreteState subclasses can deci de which
st at esucceeds anot her and under what circunstances.

¥Consequences

The State pattern has the foll owi ng consequences:

1. It localizes state-specific behavior and partitionsbehavior for different
states. The State pattern puts all behavior associated with a particul ar
stateinto one object. Because all state-specific code lives in a
St at esubcl ass, newst ates andtransiti ons canbe added easi | y by defi ni ngnew

subcl asses.

An alternative is to use data values to define internal states andhave
Cont ext operations check the dataexplicitly. But then we' dhave | ook-al i ke
conditional or case statements scattered throughoutContext's

i mpl enent ati on. Adding a new state coul d requirechangi ng several

operations, which conplicates maintenance.

The State pattern avoids this probl embut m ght introduce anot her, because
the pattern distributes behavior for different states acrossseveral State
subcl asses. This increases the nunber of classes and isless conpact than
a single class. But such distribution is actuallygood if there are many

states, which woul d otherw se necessitate |argeconditional statenents.

Li kel ong procedures, | arge conditi onal statenents are undesirable. They're

nonol i thic and tend t o make the code | ess explicit, whichinturn makes t hem
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difficult to nodify and extend. The State patternoffers a better way to
structure state-specific code. The logic thatdeterm nes the state
transitions doesn't resideinnonolithicif or switchstatenents but instead
is partitionedbetween the State subcl asses. Encapsul ating each state
transition andaction in a class elevates the idea of an execution state
tofull object status. That i mposes structure onthe code and makes it si ntent

clearer.

2. It nakes statetransitionsexplicit.Wenanobject definesitscurrent state
solely in terns of internaldata values, its state transitions have no
explicit representation;theyonlyshowup as assi gnnentsto sone vari abl es.
I ntroduci ngseparate objects for different states nmakes the transitions
noreexplicit. Al so, State objects can protect the Context from nconsi stent
internal states, because state transitions are atom cfromthe Context's
per specti ve—t hey happen by rebi nding onevariable (the Context's State
obj ect variable), notseveral [dCLF93].

3. Stateobjectscanbeshared.|f Stateobjectshavenoinstancevariabl es—t hat
is, thestatetheyrepresent is encodedentirelyintheir type—thencontexts
can sharea State object. Wen states are shared in this way, they
areessentially flyweights (see Flyweight (218)) with nointrinsic state,

only behavi or.

Y| npl enent ati on

The State pattern raises a variety of inplenentation issues:

1. Wio defines the state transitions?The State pattern does not specify which
partici pant definesthecriteriafor statetransitions. If thecriteriaare
fixed, thentheycan beinplenentedentirelyinthe Context. It is generally
nor ef | exi bl e and appropri ate, however, to let the State
subcl assest hensel ves specify their successor state and when to nake
thetransition. This requires adding an interface to the Context thatlets

State objects set the Context's current state explicitly.

Decentralizing the transitionlogic inthis way makes it easy tonodify or
extend the | ogic by defining new State subcl asses. Adi sadvant age of
decentralizationis that one State subclass will haveknow edge of at | east
one other, which introduces inpl enentationdependenci es between

subcl asses.

2. A table-based alternative.ln C++ Progranmi ng Style [Car92],
Cargill descri bes another way to inpose structure on state-driven code:
Heuses tables to map inputs to state transitions. For each state, atable

maps every possible input to a succeeding state. In effect,this approach
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converts conditional code (and virtual functions, in thecase of the State

pattern) into a table |ook-up.

The main advantage of tables is their regularity: You can change
thetransition criteria by nodi fyi ng data i nstead of changi ng prograntode.

There are sone di sadvant ages, however:

O Atable look-up is often less efficient than a (virtual)function
call.

O Putting transition logic into a uniform tabular format nakes
thetransition criteria less explicit and therefore harder to
under st and.

O It's usually difficult to add actions to acconpany the
statetransitions. The tabl e-dri ven approach capt ures t he st at es and
theirtransitions, but it nust be augmented to performarbitrary

conput ati onon each transition.

The key di ff erence bet ween t abl e-dri ven state nmachi nes andthe Statepattern
canbesummeduplikethis: The Stat e patternnodel sstate-specific behavior,

whereas the tabl e-driven approach focuses ondefining state transitions.

Creating and destroying State objects. A comon inplenmentation trade-off
worth consideringis whether(1) tocreate State objects only when they are
needed and destroy thent hereafter versus (2) creating themahead of tine

and neverdestroying them

The first choice is preferable when the states that will be enteredaren't
known at run-time, and contexts change stateinfrequently. This approach
avoi ds creating objects that won't beused, whichis inportant if the State
objects store alot ofi nformati on. The second approach i s better when state
changes occurrapidly, in which case you want to avoi d destroying states,
becauset hey may be needed again shortly. Instantiation costs are paid

onceup-front, and there are no destructioncosts at all. Thi s approachmni ght
be i nconveni ent, though, because the Context nust keepreferences to all

states that might be entered.

Usi ng dynani c i nheritance. Changi ng t he behavior for a particul ar request
coul d be acconpl i shedby changi ng the object's class at run-tine, but this
i s not possiblein npst object-oriented progranm ng | anguages. Exceptions
i ncludeSel f [ US87] and ot her del egati on-based | anguages t hat provi de such
a nmechani smand hence support the State pattern directly. Cbjects in Self
can del egate operations to other objects to achieve aform of dynanic

i nheritance. Changingthedel egationtarget atrun-tinme effectively changes
the inheritance structure. Thismechanismlets objects change their

behavi or and anpunts to changi ngtheir class.
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¥Sanpl e Code

The fol | owi ng exanpl e gi ves the C++ code for the TCP connecti onexanpl e descri bed
inthe Motivationsection. This exanpleis asinplifiedversionof the TCP protocol;

it doesn't describe theconplete protocol or all the states of TCPconnections.®

First, we define the class TCPConnecti on, which provides aninterface for

transmitting data and handl es requests to change state.

cl ass TCPCct et Stream
cl ass TCPSt at e;

cl ass TCPConnection {
public:
TCPConnection();

voi d ActiveQpen();
voi d PassiveQpen();
void Cose();

voi d Send();

voi d Acknow edge();

voi d Synchroni ze();

voi d ProcessCctet (TCPCct et Streant);
private:

friend class TCPSt ate;

voi d ChangeSt at e( TCPSt at e*) ;
private:

TCPState* _state;
b

TCPConnect i on keeps ani nst ance of t he TCPSt at ecl assinthe _state nenber vari abl e.
The cl assTCPSt at e dupl i cates the st ate-changi ng i nterface of TCPConnecti on. Each
TCPSt at e operation takes aTCPConnecti on i nstance as a paraneter, | ettingTCPState

access data from TCPConnecti on andchange the connection's state.

class TCPState {
public:
virtual void Transnit(TCPConnection*, TCPCctetStreant);
virtual void ActiveOpen(TCPConnection*);
virtual void PassiveOpen(TCPConnection*);
virtual void C ose(TCPConnection*);

virtual void Synchroni ze( TCPConnecti on*);
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virtual void Acknow edge( TCPConnecti on*);
virtual void Send(TCPConnection*);
pr ot ect ed:

voi d ChangeSt at e( TCPConnecti on*, TCPState*);
h

TCPConnecti on del egates all state-specific requests to itsTCPState instance
_state. TCPConnection al so provides an operation for changing thisvariable to a
new TCPSt ate. The constructor forTCPConnection initializes the object to
theTCPO osed state (defined later).

TCPConnect i on: : TCPConnection () {

_state = TCPd osed: : I nstance();

voi d TCPConnecti on:: ChangeState (TCPState* s) {

_state = s;

voi d TCPConnection:: ActiveOpen () {

_state->ActiveQpen(this);

voi d TCPConnecti on: : PassiveOpen () {

_stat e->Passi veQpen(this);

voi d TCPConnection:: C ose () {

_state->Cl ose(this);

voi d TCPConnecti on:: Acknow edge () {
_state->Acknow edge(this);

voi d TCPConnecti on:: Synchroni ze () {

_state->Synchroni ze(this);

TCPSt at e i mpl enent's def ault behavior for all requestsdel egatedtoit. It can al so
change the state of aTCPConnection with the ChangeState operation. TCPState is

declared a friend of TCPConnectiontogiveit privileged accesstothis operation.

void TCPState:: Transmit (TCPConnection*, TCPCctetStreant) { }
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void TCPState::ActiveOQpen (TCPConnection*) { }
voi d TCPSt at e: : Passi veOpen (TCPConnection*) { }
void TCPState::Cd ose (TCPConnection*) { }

voi d TCPSt at e: : Synchroni ze (TCPConnection*) { }

voi d TCPSt at e: : ChangeSt ate ( TCPConnection* t, TCPState* s) {

t->ChangeSt ate(s);

Subcl asses of TCPState inplenent state-specific behavior. ATCP connection can
be in many states: Established, Listening, C osed,etc., and there's a subcl ass
of TCPState for each state.We'|| discuss three subclasses in detail:

TCPEst abl i shed, TCPLi sten, and TCPJ osed.

cl ass TCPEstablished : public TCPState {

public:
static TCPState* |Instance();
virtual void Transmt(TCPConnection*, TCPCctetStreant);
virtual void O ose(TCPConnection*);

H

class TCPListen : public TCPState {
public:

static TCPState* |Instance();

virtual void Send(TCPConnection*);
/1

b

class TCPO osed : public TCPState {

public:
static TCPState* |Instance();
virtual void ActiveOpen(TCPConnection*);
virtual void PassiveQpen(TCPConnecti on*);
11

b

TCPSt at e subcl asses maintain no | ocal state, sothey can be shared, and only one
i nstance of each is required. Theunique instance of each TCPState subclass is

obt ai ned by thestatic |Instanceoperation.?®
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Each TCPSt ate subcl ass i npl ements state-specific behaviorfor valid requests in

the state:

void TCPCO osed: : Acti veOpen (TCPConnection* t) {
/1 send SYN, receive SYN, ACK, etc.
ChangeSt ate(t, TCPEstablished::|nstance());

voi d TCPC osed: : Passi veOpen ( TCPConnection* t) {
ChangeState(t, TCPListen::Instance());

voi d TCPEst abl i shed:: C ose (TCPConnection* t) {
/1l send FIN, receive ACK of FIN
ChangeSt ate(t, TCPListen::Instance());

voi d TCPEstablished::Transmit ( TCPConnection* t, TCPCctetStreant o ) {

t->ProcessCctet (0);

voi d TCPLi sten:: Send (TCPConnection* t) {
/1 send SYN, receive SYN, ACK, etc.
ChangeState(t, TCPEstablished::Instance());

After performing state-specific work, these operations call theChangeState
operation to change the state ofthe TCPConnection. TCPConnection itself
doesn' t knowa t hi ng about t he TCP connecti on protocol; it'stheTCPState subcl asses

that define each state transitionand action in TCP.

¥YKnown Uses

Johnson and Zwei g [JZ91] characterize theState pattern and its application to

TCP connection protocols.

Most popul ar interactive drawi ng prograns provide "tools" forperform ng

operations by direct manipul ati on. For exanple, aline-drawing tool |lets a user
click and drag to create a newline. Asel ection tool |lets the user sel ect shapes.
There's usually a pal etteof such tools to choose from The user thinks of this
activity aspickingup atool andwieldingit, but inreality the editor'sbehavior

changes with the current tool: When a drawing tool is activewe create shapes;
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when the selection tool is active we sel ect shapes; and so forth. W can use the

State pattern to change the editor'sbehavi or dependi ng on the current tool.

We can defi ne an abstract Tool class fromwhi ch to define subcl assest hat i npl enent
tool - specific behavior. The drawi ng editor maintains acurrent Tool object and
del egates requeststoit. It replaces thisobject whenthe user chooses a newt ool ,

causi ng the behavi or of thedrawi ng editor to change accordi ngly.

This technique is used in both the HotDraw [Joh92] and Unidraw [VL90] draw ng
editor frameworks. It all ows clientstodefinenewkinds of toolseasily. | nHotDraw,
the Drawi ngController class forwards the requests to the current Tool object.
In Unidraw, the corresponding cl asses are Viewer and Tool. The foll ow ng cl ass

di agr am sket ches the Tool and Draw ngController interfaces:

DrawingController {}currenirut}l m{ Too!
MovsePrassed() HandleMousePress()
Processkeyboard() HandiehdouseRelaazai}
Initializel) HandleCharacter}
GetCursar)
Activatel)
| CreationTool | | SelectionTool | | TextTool |

Coplien's Envel ope-Letter idiom|[Cop92] is related toState. Envel ope-Letter is
a techni que for changing an object's class atrun-tine. The State patternis nore
speci fic, focusing on how to dealwith an object whose behavi or depends on its

state.

YRel ated Patterns

The Flywei ght (218) pattern explains when and how State objects can be shared.

State objects are often Singletons (144).

8Thi s exanpl e i s based on t he TCP connecti on prot ocol descri bed by Lynch andRose

[LRO3] .
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°Thi s makes each TCPState subclass a Singleton (see Singleton (144)).
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¥ ntent

Strategy

Defineafanm |y of al gorithns, encapsul at e each one, and nake t hem nt er changeabl e.

Strategy lets the algorithmvary independently frontlients that use it.

YAl so Known As

Poli cy

YMoti vati on

Many al gorithns exist for breaking a streamof text into lines.Hard-wiring all

such algorithns into the classes that

reasons:

require themsn't desirable for several

Clients that need |inebreaking get nore conplex if they includethe

| i nebreaki ng code.

That mekes clients bigger

and harder tomaintain,

especially if they support nultiple |inebreaking algorithmns.

Different al gorithnms will be appropriate at different times. W don'twant

to support multiple linebreaking algorithnms if we don't use themall.

It'sdifficulttoaddnewal gorithns andvary exi stingones whenlinebreaki ng

is an integral

part of a client.

We can avoid these problens by defining classes that encapsul atedifferent

| i nebreaking algorithns. An algorithmthat's encapsulated inthis way is called

a strategy.

- compositar ;
Composition < & Compositor
Traverse() Compose])
Hepairi) o /k

T

1

! | |

I ] SimpleCompositor TeXCompaositor

compeositor-»=Composel)

ArrayCompositor

Composed)

Composed)

Composea()

Suppose a Conposition class is responsi ble for naintaining andupdating the

| i nebreaks of text displayed in a text viewer.Linebreaking strategies aren't
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i mpl enented by the class Conposition.lnstead, they are inplemented separately
by subcl asses of the abstract Conpositor class. Conpositor subclasses inplenent

di fferent strategies:

Si mpl eConposi torinpl enents a sinple strategy that determ nes |inebreaks
one at atime.

TeXConpositorinpl enents the TeX al gorithmfor finding |inebreaks. This
strategytries to optim ze | i nebreaks globally, that is, one paragraph at
atine.

ArrayConposi torinpl ements a strategy that sel ects breaks so that each row
has a fi xednunber of itenms. It's useful for breaking a collection of icons

intorows, for exanple.

A Conposi tion mai ntains areferenceto a Conpositor object. Wienever aConposition
reformats its text, it forwards this responsibility toitsConpositor object. The
client of Conposition specifies whichConpositor should be used by installingthe
Conpositor it desires intothe Conposition.

YApplicability

Use the Strategy pattern when

many rel ated classes differ only in their behavior. Strategi esprovide a
way to configure a class with one of nany behaviors.

you need different variants of an algorithm For exanple, you m ght
defineal gorithns reflecting different space/tine trade-offs. Strategies
can be used when these variants are inplenented as a cl asshierarchy of
al gorithms [HOB7].

an al gori thmuses data that clients shouldn't know about. Use theStrategy
pattern to avoi d exposing conplex, algorithmspecific datastructures.

a cl ass defines nmany behaviors, and these appear as nultipl econditional
statements in its operations. Instead of manyconditionals, nove rel ated

condi tional branches into their ownStrategy cl ass.
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¥YStructure

strate
Context - 9y w Strategy
Contextinterface!) Algorithminterface()
ConcrateStratagy A ConcreteStrategyB ConcreteStrategyC
Algordthminterfacel) Algorithminterfacel) Algorithminterface()

YPartici pants

Strategy (Conpositor)
0 declares an interface common to all supported al gorithms. Context
uses this interface to call the algorithmdefined by a
Concr et eStrat egy.
ConcreteStrategy (SinpleConpositor, TeXConpositor, ArrayConpositor)
O inplements the algorithmusing the Strategy interface.
Cont ext (Composition)
O is configured with a ConcreteStrategy object.
O nmintains a reference to a Strategy object.

0 nmay define an interface that lets Strategy access its data.

¥Col | aborati ons

Strat egy and Context interact to inplenment the chosen al gorithm Acontext
may pass al | datarequiredbytheal gorithmtothestrategywhentheal gorithm

is called. Alternatively, the context can passitself as an argunent to
Strategy operations. That lets the strategycall back on the context as
required.

Acontext forwardsrequestsfromitsclientstoitsstrategy. dientsusually
create and pass a ConcreteStrategy object to the context;thereafter,
clients interact with the context exclusively. There isoften a fanm |y of

ConcreteStrategy classes for a client to choosefrom

¥Consequences

The Strategy pattern has the followi ng benefits and drawbacks:
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1. Famlies of related algorithms. H erarchies of Strategy cl asses define a
fam |y of al gorithns orbehaviors for contextstoreuse. | nheritance canhel p
factor out common functionality of the algorithns.

2. An alternative to subcl assing.|nheritance offers another way to support
a variety of algorithnms orbehaviors. You can subclass a Context class
directly to give itdifferent behaviors. But this hard-w res the behavi or
into Context.It mixes the algorithminplenmentationw th Context's, making
Cont ext harder to understand, maintain, and extend. And you can't vary
t heal gori thmdynami cal ly. You wind up with many rel at ed cl asses whoseonly
difference is the algorithmor behavior they enpl oy. Encapsul ating the
algorithmin separate Strategy classes lets you varythe algorithm
i ndependently of its context, nmaking it easier tosw tch, understand, and
extend.

3. Strategies elinnate conditional statenents. The Strategy pattern offers
an alternative to conditional statenents forsel ecting desired behavi or
When di f ferent behavi ors are | unped i nto onecl ass, it's hardto avoid using
conditional statements to select theright behavior. Encapsulating the
behavior in separate Strategy cl asseselininates these conditiona

statenents.

For exanpl e, without strategies, the code for breaki ngtext intolinescould

| ook Iike

voi d Conposition::Repair () {

switch (_breakingStrategy) {

case SinpleStrategy:
ConposeW t hSi npl eConposi tor();
br eak;

case TeXStrategy:
ConmposeW t hTeXConposi tor();
br eak;
/1

}

/1 merge results with existing conposition, if necessary

The Strategy pattern elimnates this case statement by del egating

t hel i nebreaking task to a Strategy object:
voi d Conposition::Repair () {

_conposi t or - >Conpose() ;

/1 merge results with existing conposition, if necessary
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Code containing many conditional statements often indicatesthe need to

apply the Strategy pattern.

4. A choice of inplenentations. Strategies can provide different
i mpl enent ati ons of t he sanebehavi or. The cli ent can choose anpng str at egi es
with differenttime and space trade-offs.

5. dients nust be aware of different Strategies. The pattern has a potenti al
drawback in that a client nust understandhow Strategies differ before it
can sel ect the appropriate one.dients night be exposed to i npl ementation
i ssues. Thereforeyoushoul dusethe Strategy patternonlywhenthevariation
in behavior isrelevant to clients.

6. Communi cati on over head bet ween St r at egy and Cont ext. The Strategy i nterface
is shared by all ConcreteStrategy classeswhether the algorithnms they
i mpl ement are trivial or conplex. Henceit's likely that some
ConcreteStrategi eswon't useall theinformationpassedtothemthroughthis
interface; sinple ConcreteStrategi es mayuse none of it! That means there
will betinmes whenthe contextcreates andinitializes parametersthat never
get used. If this is anissue, then you'll need tighter coupling between
Strategy and Context.

7. Increased nunber of objects.Strategies increase the nunber of objects in
an application. Sonetinmesyou can reduce this overhead by inplenmenting
strategi es as st at el essobj ects that contexts can share. Any residual state
i s mai nt ai ned by t hecontext, whi ch passesit ineachrequest tothe Strategy
obj ect. Sharedstrategi es shoul d not mai ntai n state across i nvocati ons. The

Fl ywei ght (218) pattern describes this approach in noredetail.

Y| npl enent ati on

Consi der the follow ng inplenentation issues:

1. Defining the Strategy and Context interfaces. The Strategy and Context
i nterfaces must gi veaConcreteStrategyefficient accesstoanydatait needs

froma context, and vice versa.

One approach is to have Context pass data in paraneters to

Strat egyoperations—in other words, take the data to the strategy. This
keepsStrat egy and Cont ext decoupl ed. On the ot her hand, Context m ght pass
data the Strategy doesn't need.

Anot her techni que has a context pass itsel f as an argunent, andt he strategy
requests data fromthe context explicitly.Alternatively, the strategy can
store areferencetoits context,elimnating the need to pass anythi ng at

all. Either way, thestrategy can request exactly what it needs. But now
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Cont ext nustdefine a nore el aborate interface to its data, which couples

Strat egyand Context nore closely.

The needs of the particular algorithmand its data requirenents

wi |l determ ne the best technique.

Strategies as tenpl ate paraneters. | n C++ tenpl at es can be used t o confi gure
aclasswithastrategy. Thistechniqueisonlyapplicableif (1) the Strategy
can be sel ectedat conpile-tine, and (2) it does not have to be changed at
run-time.Inthis case, theclasstobeconfigured(e.g., Context) isdefined

as a tenplate class that has a Strategy cl ass as aparaneter:

tenpl ate <class AStrategy>
class Context {
void Operation() { theStrategy. DoA gorithn(); }
11
private:
AStrat egy theStrategy;
s

The class is then configured with a Strategy class when it's

instanti at ed:

class MyStrategy {
public:

voi d DoAl gorithn();
s

Cont ext <MySt r at egy> aCont ext ;

Wthtenpl ates, there's noneedtodefineanabstract class that defines
the interface to the Strategy. Using Strategy as atenpl ate paraneter al so
lets you bind a Strategy to itsContext statically, which can increase

ef ficiency.

Maki ng Strategy objects optional.The Context class may be sinplified if
it's meani ngful not tohave a Strategy object. Context checks to seeif it
has a Strategyobj ect before accessing it. If there is one, then Context
uses itnormally. If there isn't a strategy, then Context carries out
def aul t behavi or. The benefit of this approach is that clients don't have
todeal with Strategy objects at all unless they don't |ike thedefault

behavi or.
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¥Sanpl e Code

We' Il give the high-level code for the Mdtivation exanpl e, which i sbased on the

i mpl enent ati on of Conposition and Conpositor classes inlnterViews [LCl +92].

The Conposition class nmaintains a collection of Conponent instances, which
represent text and graphicalelenents in a docunent. A conposition arranges
conponent objects intolines using an instance of a Conpositor subcl ass,

whi chencapsul ates a |inebreaki ng strategy. Each conponent has anassoci at ed
natural size, stretchability, and shrinkability. Thestretchability defines how
much t he conponent can grow beyond itsnatural size; shrinkability is how nuch
it can shrink. Theconposition passes these values to a conpositor, which uses

them todeternine the best location for |inebreaks.

cl ass Conposition {

public:
Conposi ti on( Conposi tor*);
void Repair();
private:
Conpositor* _conpositor;
Conponent * _conponents; /1 the list of conponents
int _conponent Count; /1 the nunmber of conponents
int _lineWdth; /] the Conposition's line width
int* _lineBreaks; /1 the position of |inebreaks
/1 in conmponents
int _lineCount; /1 the nunber of |ines
b

When a new | ayout is required, the conposition asks its conpositor todeterm ne
where to pl ace | i nebreaks. The conposition passes t heconpositor three arrays t hat
define natural sizes, stretchabilities,and shrinkabilities of the conponents.
It al so passes the nunmber of conponents, howw de the line is, and an array that
the conmpositorfills with the position of each |inebreak. The conpositor returns

t henunmber of cal cul ated breaks.

The Conpositor interface lets the conposition pass theconpositor all the

information it needs. This is an exanple of"taking the data to the strategy":

cl ass Conpositor {
public:
virtual int Conpose(
Coord natural[], Coord stretch[], Coord shrink[],

int conponent Count, int lineWdth, int breaks[]
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pr ot ect ed:
Conpositor();
b

Not e that Conpositor is an abstract class. Concretesubcl asses define specific

|'i nebreaki ng strategies.

The conposition calls its conpositor in its Repairoperation. Repair first

initializes arrays with the natural size, stretchability, and shrinkability of
each conponent (the detail sof which we omit for brevity). Then it calls on the
compositor toobtain the Iinebreaks and finally | ays out the conponents accordi ng

tothe breaks (also onmtted):

voi d Conposition::Repair () {
Coord* natural ;
Coord* stretchability;
Coord* shrinkability;
i nt conponent Count ;

int* breaks;

Il prepare the arrays with the desired conponent sizes

11
I/ determ ne where the breaks are:
int breakCount;
breakCount = _conpositor->Conpose(
natural, stretchability, shrinkability,
conponent Count, _lineWdth, breaks
)i
/1 lay out components according to breaks
/1
}

Nowl et' s | ook at t he Conpositor subcl asses. Si npl eConposi t or examni nes conponent s

aline at a time todeterm ne where breaks should go:

cl ass Sinpl eConpositor : public Conpositor {
public:
Si npl eConpositor();
virtual int Conpose(
Coord natural[], Coord stretch[], Coord shrink[],

int conponent Count, int lineWdth, int breaks[]
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/11
b

TeXConposi tor uses a nore gl obal strategy. |t exani nes apar agraph at atine, taking
into account the conponents' sizeand stretchability. It also tries to give an

even "color" to theparagraph by mnimzing the whitespace between conponents.

cl ass TeXConpositor : public Conpositor {

public:
TeXConposi tor();
virtual int Conpose(
Coord natural[], Coord stretch[], Coord shrink[],
int conponent Count, int lineWdth, int breaks[]
)i
/1
b

ArrayConposi tor breaks the conmponents into lines at regularintervals.

cl ass ArrayConpositor : public Conpositor {

public:
ArrayConpositor(int interval);
virtual int Conpose(
Coord natural[], Coord stretch[], Coord shrink[],
int conponent Count, int lineWdth, int breaks[]
)i
/1
b

These cl asses don't use all the information passed i nConpose. Si npl eConpositor
i gnores the stretchabilityof the components, taking only their natural w dths
i nto account. TeXConpositor uses all the information passed to it,

wher easArrayConposi tor ignores everything.

To instantiate Conposition, you pass it the conpositoryou want to use:

Conposi tion* qui ck = new Conpositi on(new Si npl eConpositor);
Conposi tion* slick = new Conposition(new TeXConpositor);
Conposi tion* iconic = new Conposition(new ArrayConpositor(100));

Conpositor'sinterfaceis carefully designedto support alllayout al gorithnsthat
subcl asses m ght inplenent. You don't want tohave to change this interface with
every new subcl ass, because that w Il require changing existing subclasses. In
general, the Strategy andContext interfaces deternm ne how well the pattern

achieves its intent.
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¥YKnown Uses

Both ET++ [WGWB8] and InterViews use strategies to encapsul atedifferent

| i nebreaking al gorithnms as we've descri bed.

In the RTL System for conpiler code optimzation [JM.92], strategies define
different register allocation schenes(RegisterAllocator) and instruction set
schedul i ng polici es(Rl SCschedul er, Cl SCschedul er). This provides flexibilityin

targeting theoptim zer for different nachine architectures.

The ET++SwapsManager cal cul ati on engi ne franework computes prices fordifferent
financial instrunents [EG2]. Its keyabstractions are I nstrunent and Yi el dCurve.
Different instrunents areinpl emented as subcl asses of Instrunent. YieldCurve
cal cul at esdi scount factors, whichdetermn nethe present val ue of futurecashfl ows.
Bot h of these cl asses del egate sonme behavior to Strategyobjects. The framework
provides a fam |y of ConcreteStrategy classesfor generating cash fl ows, val uing
swaps, and cal cul ati ng di scountfactors. You can create new cal cul ati on engi nes
by configuringlnstrunent and YieldCurve with the different ConcreteStrategy
obj ects. This approach supports m xing and mat chi ng exi sting

Strategyi npl enentations as well as defining new ones.

The Booch conponents [BV90] use strategies as tenpl ateargunents. The Booch
col l ection cl asses support three di fferent ki nds of nenory al | ocati on strategies:
managed (all ocation out of a pool),controlled (allocations/deallocations are
protect ed by | ocks), andunmanaged (t he normal nmenory al | ocator). These strategi es
are passed astenplate argunments to a collection class when it's instantiated.
For exanpl e, an UnboundedCol | ection that uses the unnmanaged strategy

i sinstanti ated as UnboundedCol | ecti on.

RApp is a systemfor integrated circuit |ayout [GA89, AGI0].RApp must |ay out
and route wires that connect subsystens onthecircuit. Routing al gorithns in RApp

are defined assubcl asses of an abstract Router class. Router is a Strategy cl ass.

Borl and' s Obj ect Wndows [Bor94] uses strategies in dial ogsboxes to ensure that
the user enters valid data. For exanple, nunbers m ghthave to be in a certain
range, andanunericentryfieldshoul dacceptonlydigits. Validatingthat astring

is correct can require atable |ook-up.

Obj ect Wndows uses Validator objects to encapsul ate validationstrategies.

Val i dators are exanples of Strategy objects. Data entryfields del egate the
validation strategy to an optional Validatorobject. The client attaches a
validator toafieldif validationisrequired (anexanpl eof anoptional strategy).
When the dial og isclosed, the entry fields ask their validators to validate the

data. The class library provides validators for commopn cases, such as
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aRangeVal i dator for nunbers. New client-specific validation strategi escan be

defined easily by subclassing the Validator class.

YRel ated Patterns

Fl ywei ght (218): Strategy objects often nake good fl yweights.
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Tenpl ate Met hod

¥ ntent

Define the skeleton of an algorithmin an operation, deferring sonmesteps to
subcl asses. Tenpl ate Met hod | et s subcl asses redefinecertain steps of anal gorithm

wi t hout changi ng the algorithm sstructure.

YMoti vati on

Consi der an application framework t hat provi des Applicati on andDocunent cl asses.
The Application class is responsible for openi ngexi sti ng docunents stored in an
external format, such as a file. ADocunment object represents the information in

a docunent once it'sread fromthe file.

Applications built with the framework can subcl ass Applicati on andDocunent to
suit specific needs. For exanple, a draw ng applicationdefines DrawApplication
and DrawDocunent subcl asses; a spreadsheet application defines

Spr eadsheet Appl i cati on and Spreadsheet Docunent subcl asses.

docs
Document  [bl————— Application
Savel} AddDocument()
Openi) OpenDacurment()
Closa() DoCreateDocurment(
DaRead|) CanCpenDocumentt

About TeOpenDocumenti

?

MyDocument fe---------—- MyApplication

DoRead{) DoCreateDocument()  ©@------ relum new MyDocument
CanCpenDocumeant()
AboutToOpenDocument()

The abstract Application class defines the algorithmfor opening andreading a

docunment in its OpenDocunent operation:

voi d Application:: OpenDocunent (const char* nane) {
if (!CanOpenDocunent (nane)) {
/1 cannot handl e this docunent

return;
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Docunent * doc = DoCreat eDocunent () ;
if (doc) {
_docs->AddDocunent (doc) ;
About ToOpenDocunent (doc) ;
doc- >Open() ;
doc- >DoRead() ;
}

OpenDocunent defines each step for opening a docunent. It checks ifthe docunent
can be opened, creates the application-specific Docunmentobject, adds it toits

set of documents, and reads the Docunent from afile.

We call OpenDocunment a tenplate nethod. A tenplate nmethoddefines an algorithm
in terms of abstract operations that subcl assesoverride to provide concrete
behavi or. Application subcl asses definethe steps of the algorithmthat check if
the docunment can be opened(CanOpenDocunent) and that create the Docunent

(DoCr eat eDocunent ). Docunent cl asses define the step that reads the docunent
(DoRead) . The tenplate nmethod al so defines an operation that lets

Appl i cati onsubcl asses know when the docunment is about to be

opened( About ToOpenDocunent), in case they care.

By defining sone of the steps of an algorithm using abstractoperations, the
tenpl ate nethod fixes their ordering, but it |letsApplication and Docunent

subcl asses vary those steps to suit theirneeds.

YApplicability

The Tenpl ate Met hod pattern shoul d be used

to inplenent the invariant parts of an algorithmonce and | eave it upto
subcl asses to i npl enent the behavior that can vary.

when conmon behavi or anpbng subcl asses shoul d be factored and | ocal i zedin
a common class to avoid code duplication. This is a good exanple

of "refactoring to generalize" as described by Opdyke andJohnson [ QJ93].
You first identify thedifferences in the existing code and then separate
the di fferencesi ntonewoperations. Finally, youreplacethedifferingcode
with atenplate method that calls one of these new operations.

tocontrol subcl asses extensi ons. Youcandefine atenpl ate net hodt hat cal | s
"hook" operations (see Consequences) at speci fic points,thereby permtting

extensions only at those points.
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¥YStructure

AbstractClass

Tl
TemplateMethod() G -f---—-------- PrimitiveQperation1 ()
PrimitiveQperation1()
PrimitiveOperation2() PrimitiveOparation2()

ConcreteClass

PrimitiveOperation ()
PrimitiveOparation2()

YParticipants

Abstract Cl ass (Application)
0 defines abstract primitive operations that concretesubcl asses
define to inplement steps of an algorithm
O inplements a tenplate nmethod defining the skeleton of an
al gorithm The tenplate nethod calls primtive operations as well
as operationsdefined in AbstractC ass or those of other objects.
ConcreteC ass (M/Application)
O inplenents the primtive operations to carry out
subcl ass-speci ficsteps of the algorithm

¥Col | aborati ons

ConcreteCl ass relies on AbstractC ass to i npl enent the invariant steps of
the algorithm

¥Consequences

Tenpl at e net hods are a fundanental techni que for code reuse. They areparticularly
inmportant inclass |libraries, because they are the meansfor factoring out conmon
behavior in library classes.

Tenpl ate nethods | ead to an inverted control structure that'ssonetinmes referred
to as "the Hol | ywood principle,” that is, "Don"tcall us, we'll call you" [ Swe85].
Thi s refers tohowa parent cl ass cal | sthe operations of asubcl ass and not t heot her
way around.
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Tenpl ate nmethods call the follow ng kinds of operations:

concrete operations (either on the ConcreteC ass or onclient classes);
concrete AbstractC ass operations (i.e., operations that aregenerally
useful to subcl asses);

primtive operations (i.e., abstract operations);

factory methods (see Factory Method (121)); and

hook operati ons, whi ch provi de default behavi or that subcl asses can ext end
if necessary. A hook operation often doesnothing by default.

It's inportant for tenplate nmethods to specify which operations arehooks (may
be overridden) and which are abstract operations(nust be overridden). To reuse
an abstract cl ass effectively, subclass witers nust understand whi ch operations

are designed foroverriding.

A subcl ass can extend a parent class operation's behavior byoverriding the

operation and calling the parent operation explicitly:

voi d DerivedC ass:: Operation () {
/1 DerivedC ass extended behavi or

Parent C ass: : Operation();

Unfortunately, it'seasytoforget tocall theinheritedoperati on. W cantransform
such an operation into a tenplate nethod to givethe parent control over how
subcl asses extend it. The idea is tocall a hook operation froma tenpl ate nmet hod

in the parent class. Then subcl asses can then override this hook operation:

void ParentC ass:: Operation () {
/1 Parentd ass behavi or

HookOper ati on() ;

HookOper ati on does nothing in Parentd ass:

voi d ParentCl ass: : HookOperation () { }

Subcl asses override HookOperation to extend itsbehavior:

voi d DerivedC ass: : HookOperation () {

/1 derived class extension
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Y| npl enent ati on

Three inplenentation issues are worth noting:

1. Using C++ access control.Iln C++, the primtive operations that a tenplate
net hod cal | s can bedecl ared prot ected nenbers. This ensures that they are
only called bythe tenplate nethod. Primtive operations that nust be
overridden aredecl ared pure virtual. The tenpl ate met hod i t sel f shoul d not
beoverri dden; thereforeyoucan nake t hetenpl at e net hod a nonvi rt ual nenber
function.

2. Mnimzing primtive operations.An i nportant goal in designing tenplate
met hods is to minimze thenunmber of prinitive operations that a subcl ass
must override to fleshout the algorithm The nore operations that need
overriding, the noretedious things get for clients.

3. Naming conventions. You can identify the operations that should be
overridden by adding aprefix to their nanes. For exanple, the MacApp
framewor k f or Maci nt oshappl i cati ons [ App89] prefi xes t enpl at e met hod nanes
with "Do-":"DoCreat eDocument”, "DoRead", and so forth.

¥Sanpl e Code

The foll ow ng C++ exanpl e shows how a parent class can enforce aninvariant for
its subcl asses. The exanple comes from NeXT' sAppKit [Add94]. Consider a class
Vi ew t hat supportsdrawing on the screen. View enforces the invariant that

i tssubcl asses candrawintoaviewonlyafter it becomes the "focus, "whi chrequires

certain drawing state (for exanple, colors and fonts) tobe set up properly.

We can use a Display tenpl ate nethodto set up this state.Viewdefines two concrete
operations, Set Focus and Reset Focus, that set up and cl ean upthe drawi ng state,
respectively. View s DoDi spl ayhook operati on perforns theactual drawi ng. D spl ay
cal | sSet Focus before DoDi splay to set up the drawi ngstate; Display calls

Reset Focus afterwards torel ease the drawi ng state.

void View :Display () {
Set Focus() ;
DoDi spl ay() ;

Reset Focus() ;
To maintain the invariant, the View s clients always callDisplay, and View
subcl asses al ways overri deDoDi spl ay.

DoDi spl ay does nothing in View
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void View :DoDisplay () { }
Subcl asses override it to add their specific draw ng behavior:

void MyView : DoDi splay () {

/1 render the view s contents

¥YKnown Uses

Tenpl at e net hods are so fundanent al that they can be foundin al nostevery abstract
class. Wrfs-Brock et al. [WBWAM0, WBJ90] provide a good overvi ew anddi scussi on

of tenpl ate nethods.

YRel ated Patterns

Factory Methods (121) are often called by tenplate nmethods. In the Mtivation
exanpl e,the factory nmethod DoCreat eDocunent is called by the tenplate
met hodQpenDocunent .

Strategy (349): Tenplate nmethods use inheritance to vary part of an

al gorithm Strategi es use delegation to vary the entire algorithm
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Vi sitor

¥ ntent

Represent an operation to be perforned on the el enents of an objectstructure.
Visitor | ets you defi ne anewoperationw thout changi ngthecl asses of t he el enents

on which it operates.

YMoti vati on

Consi der a conpiler that represents prograns as abstract syntax trees.|lt wll
need t o per formoperati ons on abstract syntax trees for "staticsemantic" anal yses
i ke checking that all variables are defined. Itwill also need to generate code.
Soit might define operations fortype-checking, code opti m zation, fl owanal ysi s,
checking for variabl esbei ng assi gned val ues before they're used, and so on.
Mor eover, we coul duse the abstract syntax trees for pretty-printing,
progranrestructuring, code instrunmentation, and conputing various netrics of

aprogram

Most of these operations will need to treat nodes that representassi gnment
statenments differently fromnodes that represent variables orarithnetic
expressions. Hence there will be one cl ass for assignment statenments, another for
vari abl e accesses, another for arithneti cexpressions, and so on. The set of node
cl asses depends on t he | anguagebei ng conpi | ed, of course, but it doesn't change

much for a givenl anguage.

Node

TypeCheck()

GenerateCade)

PrettyPrinty)
VariableRefNode AssignmentNode
TypelCheck() TypeCheck()
GenerateCode() GenerateCodea()
PretiyPrint) PrettyPrint)

Thi s diagram shows part of the Node class hierarchy. The probl em hereis that
distributingall these operations across the various nodecl asses | eads to a system

that's hard to understand, maintain, andchange. It will be confusing to have
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t ype- checki ng code m xed wi t hpretty-printingcodeor fl owanal ysi s code. Moreover,
addi ng a newoperation usual ly requires reconpiling all of these classes. |t would
bebetter if each new operation coul d be added separately, and the nodecl asses

wer e i ndependent of the operations that apply to them

We can have both by packaging rel ated operations fromeach class in aseparate
object, called a visitor, and passing it toel enents of the abstract syntax tree
as it's traversed. Wen an el enent"accepts" the visitor, it sends a request to
the visitor that encodesthe element’'s class. It also includes the el ement as an
argunment. Thevisitor wi Il thenexecutetheoperationfor that el ement—theoperati on

that used to be in the class of the el enent.

For exanpl e, a conpiler that didn't use visitors m ght type-check aprocedure by
calling the TypeCheck operation on its abstract syntaxtree. Each of the nodes
woul d i npl emrent TypeCheck by cal | i ng TypeCheckonits conmponents (seethe preceding
class diagram. If the conpilertype-checked a procedure using visitors, thenit
woul d create aTypeCheckingVisitor object and call the Accept operation on

t heabstract syntax tree with that object as an argunent. Each of thenodes would
i mpl enment Accept by calling back on the visitor: anassi gnnent node calls

Vi si t Assi gnment operation on the visitor, whilea variable reference calls

Vi sitVariabl eReference. What used to be theTypeCheck operation in class

Assi gnnent Node is now the VisitAssignmentoperation on TypeChecki ngVisitor.

To nmake visitors work for nore than just type-checki ng, we need anabstract parent
cl ass NodeVisitor for all visitors of an abstract syntaxtree. NodeVisitor nust
decl are an operation for each node class. Anapplication that needs to conpute
programnetrics will define newsubcl asses of NodeVisitor and will no | onger need
to add application-specific code to the node classes. The Visitor pattern

encapsul ates the operations for each conpilation phase in a Visitor associated

with that phase.

NodeVisitor

VisitAssignmentfAssignmeanithNode)
VisitVarableReliVarableRafNode)

A

TypeCheckingVisitor CodeGeneratingVisitor
Visithssignment{AssignmentMode) Visithssignment{AssignmentMode)
VisitVariable Ref{VariableHefMade) VisitVariable Ref{\VariableHefMode)
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Pragram Q—F-J Nade

AcceptiNode lVisior)

AssignmentMode VariableReiNode

AcceptModaVisitor v) IIZ' Accepl{MadeVisitor v) '?
i i
1 1
1 1

w—=VisitAssignmeant ['.hlﬁ:lh"|

v—=WisitWariableHalth 5]\}‘|

Wth the Visitor pattern, you define two class hierarchies: one for theel ements
bei ng operated on (the Node hierarchy) and one for the visitorsthat define
operations onthe el enents (the NodeVi sitor hierarchy). Youcreate a newoperation
by addi ng a new subclass to the visitor classhierarchy. As |long as the granmar
that the conpiler accepts doesn'tchange (that is, we don't have to add new Node
subcl asses), we can addnew functionality sinmply by defining new NodeVisitor
subcl asses.

YApplicability
Use the Visitor pattern when

an object structure contains many classes of objects with differing

i nterfaces, and you want to performoperations onthese objects that depend
on their concrete cl asses.

many di stinct and unrel ated operations need to be perforned on objectsin
an obj ect structure, and you want to avoid "polluting" theirclasses with
these operations. Visitor lets you keep rel ated operationstogether by
defining themin one class. Wen the object structure isshared by nany
applications, use Visitor to put operationsinjust thoseapplicationsthat
need them

t he cl asses defini ng the obj ect structure rarely change, but you oft enwant
to define newoperations over the structure. Changi ng the objectstructure
cl asses requires redefining the interface to all visitors,which is
potentially costly. If the object structure cl asses changeoften, thenit's

probably better to define the operations in those cl asses.
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¥YStructure

Visifor

VisitConeratetliementA ConcrateblamsntA}
VisitConcreletiementB{ConcraleElemsntB])

A

ConcreteVisitor ConcreteVisitor2
VisitConcreteElemantalConcrateElemanta) VisitConcrelaElamenta[Cancrete Elament &)
VisitConcreteElementBiConcreteElementB) VisitGoncreteElementB{Concrete ElementB)

ObjectStructure 4-4 Element

AccepliVisiar)

A
I I

ConcreteElementA ConcreteElementB

OperationAl) OperationB()

AccaptiVisitor v) Q AccaptVisitor v) Q
i i
1 1
1 1

| W :-Uiath:-l*-crc:cEIclrcﬂ:.-'-.-jmis]H | Y si'.Cu::-n.:lctcl:lmncntﬂi'.hisj-\ﬂ

¥YParticipants

Visitor (NodeVisitor)

(o]

declares a Visit operation for each cl ass of ConcreteEl enent inthe
obj ect structure. The operation's name and signature identifiesthe
class that sends the Visit request to the visitor. That lets the
visitor determne the concrete class of the el ement being visited.
Then the visitor can access the elenent directly through its

particul ar interface.

ConcreteVisitor (TypeCheckingVisitor)

(o]

i mpl enents each operation declared by Visitor. Each operation

i mpl enents a fragnent of the al gorithmdefinedfor the correspondi ng
class of object in the structure. ConcreteVisitor provides the
context for the algorithmand stores its local state. This state

of ten accunul ates results during the traversal of the structure.

El ement (Node)

(o]

defines an Accept operation that takes a visitor as an argunent.

Concr et eEl ement (Assi gnment Node, Vari abl eRef Node)
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0 inplenments an Accept operation that takes a visitor as an argunent.
oj ect Structure (Program

O <can enunerate its el enents.

O may provide a high-level interface to allow the visitor to visit

its elenents.

O nay either be aconposite (see Conposite (183)) or acollection such
as a list or a set.

¥YCol | aborati ons

Aclient that uses the Visitor pattern nust create a ConcreteVisitorobject
and then traverse the object structure, visiting each elementwith the
visitor.

When an el enent is visited, it calls the Visitor operation thatcorresponds
toits class. The el ement supplies itself as an argunentto this operation

to let the visitor access its state, if necessary.

The following interaction diagramillustrates the collaborationsbetween

an object structure, a visitor, and two el enents:

anObjectStructure aConcreteElameantA aConcreteElementB aConcreteVisitor

J‘ AccepliaVisitor) |
™ | VisitConcreteElementh{aConcreteElament i)

Oparationd]}

L
AcceptaVisitor)
—| VisitConcreteElementBl{aConcreteElementB)

OparationBi}

L
T
¥Consequences

Sone of the benefits and liabilities of the Visitor pattern are as follows:

1. Visitor nakes addi ng new operations easy.Visitors nmake it easy to add
operations t hat depend on t he conponent s of conpl ex obj ects. You can defi ne
a new operation over an object structuresinply by adding a new visitor.
In contrast, if you spread functionalityover many cl asses, then you nust
change each class to define a newoperation.
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Avisitor gathers rel at ed operati ons and separates unrel at ed ones. Rel at ed
behavi or isn't spread over the classes defining the objectstructure; it's
localizedinavisitor. Unrel ated sets of behavior arepartitionedintheir
own visitor subclasses. That sinplifies both theclasses defining the

el ements and the al gorithnms definedinthevisitors. Any al gorithm specific
data structures can be hidden in thevisitor.

Addi ng new Concr et eEl enent cl asses is hard. The Visitor pattern nakes it
hard t o add new subcl asses of El ement. Eachnew Concr et eEl ement gives ri se
to a new abstract operation on Visitor anda correspondi ng i npl enentati on
inevery ConcreteVisitor class. Sonetines adefault inplenmentation can be
provided in Visitor that can be inheritedby npst of the ConcreteVisitors,

but this is the exception rather thanthe rule.

So the key considerationin applyingthe Visitor patternis whether youare
mostly likely to change the al gorithmapplied over an objectstructure or
the cl asses of objects that make up the structure. TheVisitor class

hi erarchy can be difficult to mai ntai n when newConcr et eEl enent cl asses are
added frequently. In such cases, it'sprobably easier just to define

operations on the cl asses that make upthe structure. If the El enent cl ass
hi erarchy i s stable, but you arecontinual |y addi ng operations or changi ng

algorithns, then the Visitorpattern will help you nanage the changes.

Visiting across class hierarchies.An iterator (see lIterator (289)) can
visit the objects in astructure as it traverses themby calling their
operations. But an iteratorcan't work across object structures with
different types of elenents. Forexanple, the Iterator interface defined

on page 295 can access only objects of type Item

tenplate <class Itenr

class It

class Vi

public:

erator {
/1

Item Currentltem() const;

This inplies that all elements the iterator can visit have a comon

parentcl ass Item

Vi sitor does not havethisrestriction. It canvisit objects thatdon't have
a conmon parent cl ass. You can add any t ype of object toaVisitor interface.

For exanple, in
sitor {
11

voi d VisitMType(M/Type*);
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voi d VisitYour Type( Your Type*);

MyType and Your Type do not have to be rel ated throughi nheritance at all.

5. Accumul atingstate.Visitors canaccunul ate state asthey visit eachel enent
in the objectstructure. Wthout a visitor, this state woul d be passed as
extraargunments to the operations that performthe traversal, or theym ght
appear as gl obal vari abl es.

6. Breaking encapsul ation.Visitor's approach assunes that the
Concr et eEl ement i nterface is powerful enoughtolet visitors do their job.
As aresult, the pattern oftenforces you to provide public operations that

access an el ement ' si nternal state, whi ch nay conproni seits encapsul ati on.

Y| npl enent ati on

Each obj ect structure will have an associ ated Visitor class. Thi sabstract visitor
cl ass decl ares a Vi sitConcreteEl ement operation foreach cl ass of Concret eEl ement
defining the object structure. EachVisit operation on the Visitor declares its
argunment to be aparticular ConcreteEl ement, allowing the Visitor to access

theinterface of the ConcreteEl enent directly. ConcreteVisitor classesoverride
each Visit operationtoinplenent visitor-specific behaviorfor the correspondi ng

Concr et eEl enent cl ass.
The Visitor class would be declared like this in C++:

class Visitor {

public:
virtual void VisitEl enent A(El enent A*);
virtual void VisitEl enent B(El enent B*);
/1 and so on for other concrete el enents
prot ect ed:
Visitor();
}

Each class of ConcreteEl enent inplenents an Accept operationthat calls the
matching Visit... operation on the visitorfor that ConcreteEl enent. Thus the
operation that ends up gettingcalled depends on both the class of the el ement

and the class of thevisitor.®
The concrete el enents are declared as

cl ass Element {
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public:

virtual ~Elenent();

virtual void Accept(Visitor& = 0;
prot ect ed:

El ement () ;
h

class ElenentA : public El enment {
public:

El ement A() ;

virtual void Accept(Visitor& v) { v.VisitEl ementA(this); }
b

class ElenentB : public El enment {
public:
El ement B() ;
virtual void Accept(Visitor& v) { v.VisitElementB(this); }

}s

A ConpositeEl ement class mght inplement Acceptlike this:

cl ass ConpositeEl ement : public Elenent {

public:

virtual void Accept(Visitor&);
private:

Li st<El enent*>* _chil dren;
b

voi d ConpositeEl enent::Accept (Visitor& v) {

Listlterator<El enment*> i (_children);

for (i.First(); !'i.lsDone(); i.Next()) {
i.Currentlten()->Accept(Vv);

}
v. Vi si t Conposi t eEl enent (t his);

Here are two other inplenentation issues that arise when you apply theVisitor

pattern:
1. Doubl e dispatch.Effectively, the Visitor pattern |lets you add operations

to cl assesw thout changing them Visitor achieves this by using a

techni quecal | ed doubl e-di spatch. It's awell-knowntechni que. I nfact, sonme
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progranm ng | anguages support it directly (CLCS, forexanple). Languages

i ke C++ and Snml |l tal k supportsingl e-di spatch.

I n single-dispatch | anguages, two criteria determ ne which operati onwi ||
fulfill a request: the nane of the request and the type ofreceiver. For
exanpl e, the operation that a Gener at eCode request will call depends ont he
type of node object you ask. In C++, callingGenerateCode on an instance
of Variabl eRef Node willcall Vari abl eRef Node: : Gener at eCode (whi ch
generates code for avariable reference). Calling GenerateCode on

anAssi gnnent Node wi | | cal | Assi gnment Node: : Gener at eCode (which will
gener at e code for anassi gnnent). The operation that gets execut ed depends

both on the kindof request and the type of the receiver.

"Doubl e-di spat ch" sinply neans the operati on that gets execut eddepends on
the kind of request and the types of two receivers.Accept is a

doubl e-di spatch operation. |ts meani ng dependson two types: the Visitor's
and the Elenment's. Doubl e-di spatchinglets visitors request different

operations on each class ofel ement.

This is the key to the Visitor pattern: The operation that getsexecuted
depends on boththe type of Visitor andthetype of El enentit visits. | nstead
of binding operations statically into the El enentinterface, you can

consolidate the operations in a Visitor and useAccept to do the binding
at run-tinme. Extending the El enentinterface amounts to defining one new

Vi sitor subclass rather than nmany newkl ement subcl asses.

Who i s responsi bl e for traversingthe object structure?Avisitor nust visit
each el enent of the obj ect structure. The questionis, howdoes it get there?
We can put responsibility for traversal i nany of three places: inthe object
structure, inthe visitor, or in aseparate iterator object (see Iterator
(289)).

Oten the object structureis responsiblefor iteration. Acollectionwll
sinply iterate over its elements, calling the Accept operation oneach. A
conposite will commonly traverse itself by having each Acceptoperation

traverse the el enent's children and call Accept on each of t hemrecursively.

Anot her solution is to use an iterator to visit the elements. In C++,you
could use either an internal or external iterator, depending on whatis
avail abl e and what is nmost efficient. In Smalltal k, you usually usean
internal iterator using do: and a block. Since internaliterators are

i mpl enent ed by the object structure, using an internaliterator is a |lot
Ii ke making the object structure responsible foriteration. The main
difference is that an internal iterator will notcause

doubl e-di spatching—it will call an operationonthe visitor with an el enent
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as an argunment as opposed to calling anoperation on the elenent with the
visitor as an argunent.But it's easy to use the Visitor pattern with an
internal iterator ifthe operationonthevisitor sinplycallsthe operation

on the el enentw t hout recursing.

You could even put the traversal algorithmin the visitor, although
you'l l end up duplicating the traversal code in each ConcreteVisitor for
eachaggregate ConcreteEl enment. The main reason to put the traversal
strategyin the visitor is to inplement a particularly conplex traversal,

onet hat depends on the results of the operations on the object

structure. W'l give an exanple of such a case in the Sanpl e Code.
¥Sanpl e Code
Because visitors are usual |l y associ ated with conposites, we'll use theEqui pnent

cl asses defined in the Sanpl e Code of Conposite (183) toillustrate the Visitor
pattern. Wewi || use Visitor to define operations for conputing thei nventory of
materials and the total cost for a piece of equi pnent. The Equi prent cl asses are
so sinple that using Visitorisn't really necessary, but they nake it easy to see

what ' sinvolved in inplenenting the pattern.

Here again i s the Equi pnent class fromConposite (183). W' ve augnented it with

anAccept operation to let it work with a visitor.

cl ass Equi pnent {

public:
virtual ~Equiprment();
const char* Nane() { return _nane; }
virtual Watt Power();
virtual Currency NetPrice();
virtual Currency DiscountPrice();
virtual void Accept (Equi pmentVisitorg&);
pr ot ect ed:
Equi prrent (const char*);
private:
const char* _nane;
H

The Equi pent operations return the attributes of a piece ofequi pnent, such as
i ts power consunpti on and cost. Subcl asses redefi net hese operati ons appropriately

for specific types of equipnent (e.g.,a chassis, drives, and planar boards).
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The abstract class for all visitors of equi pment has a virtual function for each
subcl ass of equi pment, as shown next. All of thevirtual functions do nothing by

defaul t.

cl ass Equi pnentVisitor {
public:

virtual ~EquipnentVisitor();

virtual void VisitFloppyDi sk(Fl oppyD sk*);
virtual void VisitCard(Card*);
virtual void VisitChassis(Chassis*);

virtual void VisitBus(Bus*);

/1 and so on for other concrete subcl asses of Equi prent
prot ect ed:

Equi prent Visitor();
h

Equi pnent subcl asses define Accept inbasically the same way: It calls
t heEqui pment Vi sitor operation that corresponds to the classthat received the

Accept request, like this:

voi d Fl oppyDi sk:: Accept (EquiprmentVisitor& visitor) {
visitor. VisitFloppyDi sk(this);

Equi prent that contains other equipment (in particular, subclasses

of Conposi t eEqui prent i nt he Conposi te pattern) i npl ement sAccept by iteratingover
its children and cal |l i ngAccept on each of them Then it calls theVisit operation
as usual . For exanpl e, Chassis::Accept could traverseall the partsinthe chassis

as follows:

voi d Chassi s:: Accept (EquipnrentVisitor& visitor) {

for (
Listlterator i(_parts);
1i.1sDone();
i. Next ()
) {
i.Currentlten()->Accept(visitor);
}

visitor. VisitChassis(this);

Subcl asses of Equi pnent Vi sitor define particular algorithmsover the equi pnent

structure. The PricingVisitor conputes thecost of the equi pment structure. It
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conputes the net price of all sinpleequipnent (e.g., floppies) and the di scount

price of all conpositeequipnent (e.g., chassis and buses).

class PricingVisitor : public EquipnentVisitor {
public:
PricingVisitor();

Currency& Get Total Price();

virtual void VisitFl oppyDi sk(Fl oppyDi sk*);
virtual void VisitCard(Card*);
virtual void VisitChassis(Chassis*);
virtual void VisitBus(Bus*);
11

private:

Currency _total;

}s

void PricingVisitor::VisitFloppyD sk (FloppyDi sk* e) {

_total += e->NetPrice();

void PricingVisitor::VisitChassis (Chassis* e) {

_total += e->DiscountPrice();

PricingVisitor will conputethetotal cost of all nodes intheequi pnment structure.
Note that PricingVisitor chooses theappropriate pricing policy for a class of
equi prent by di spatching tothe correspondi ng nenber function. What's nore, we
can change thepricing policy of an equi pnent structure just by changi ng

thePricingVisitor class.
We can define a visitor for conmputing inventory like this:

class InventoryVisitor : public EquipnentVisitor {
public:

I nventoryVisitor();

Inventory& Getlnventory();

virtual void VisitFl oppyDi sk(Fl oppyDi sk*);
virtual void VisitCard(Card*);
virtual void VisitChassis(Chassis*);

virtual void VisitBus(Bus*);
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/1
private:
I nventory _inventory;

}s

The I nventoryVi sitor accumul ates thetotal s for eachtype of equi pment i nthe obj ect
structure. I nventoryVisitor uses anlnventory class that defines aninterface for

addi ng equi pnent (whi ch we won't bot her defining here).

void I nventoryVisitor::VisitFl oppyDi sk (Fl oppyDi sk* e) {

_inventory. Accurul ate(e);

void InventoryVisitor::VisitChassis (Chassis* e) {

_inventory. Accurul ate(e);

Here's how we can use an InventoryVisitor on anequi pnent structure:

Equi pnent* conponent ;

InventoryVisitor visitor;

conponent - >Accept (visitor);
cout << "lnventory "
<< conponent - >Nane()

<< visitor.Getlnventory();

Nowwe' | | showhowtoinpl ement the Smal I tal k exanpl e fromthe lInterpreter pattern
(see page 279) with theVisitor pattern. Like the previous example, this oneis
sosmal | thatVisitor probablywon't buy us much, but it provides agoodillustration
of howto use the pattern. Further, it illustrates a situation in whichiteration

is the visitor's responsibility.

The object structure (regular expressions) is made of four classes,and all of
them have an accept: nmethod that takes thevisitor as an argunent. |n class

SequenceExpression, theaccept: nmethod is

accept: aVisitor

N aVisitor visitSequence: self
In class Repeat Expressi on, the accept: nethodsends the visitRepeat: message.In

class AlternationExpression, it sends thevisitAlternation: nmessage.ln class

Literal Expression, it sends thevisitLiteral: nessage.
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The four cl asses al so nust have accessing functions that the visitorcan use. For
SequenceExpr essi on these areexpressionl and expression2;

forAl ternati onExpression these are alternativeland alternativez2;

forRepeat Expression it is repetition; and forlLiteral Expression these are

conponent s.

The ConcreteVisitor classis REMatchingVisitor. Itisresponsiblefor thetraversal
because its traversal algorithmis irregular. The biggest irregularity is that
aRepeat Expression will repeatedly traverse its conmponent.The cl ass

REMat chi ngVi si t or has aninstance vari abl ei nput State. Its net hods are essential ly
t he same ast he mat ch: net hods of the expression classesinthelnterpreter pattern
except theyreplace the argument naned i nput State with t heexpressi on node bei ng
mat ched. However, theystill return the set of streans that the expression would

matchto identify the current state.

vi si t Sequence: sequenceExp
input State : = sequenceExp expressionl accept: self.

N sequenceExp expression2 accept: self.

vi si t Repeat: repeat Exp
| final State |
final State : = inputState copy.
[inputState isEnmpty]
whi | eFal se:
[inputState : = repeat Exp repetition accept: self.
final State addAl | : inputState].

N final State

visitAl ternation: alternateExp

| finalState original State |

original State := inputState.

final State : = alternateExp alternativel accept: self.
inputState := original State.

final State addAl l: (alternateExp alternative2 accept: self).

A final State

visitLiteral: literal Exp
| final State tStream |
final State : = Set new.
inputState
do:
[:stream | tStream:= stream copy.
(t Stream next Avai | abl e:

literal Exp conmponents size
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) = literal Exp conponents
ifTrue: [final State add: tStreani

A final State

YKnown Uses

The Snal | tal k-80 conpil er has a Visitor class called ProgramNodeEnunerator.|It's
used primarily for algorithnms that anal yze source code. It isn't used for code

generation or pretty-printing, although it could be.

IRIS Inventor [Str93]is a toolkit for devel opi ng 3-D graphics applications.
Inventorrepresents a three-di nensi onal scene as a hierarchy of nodes,
eachrepresenting either a geonetric object or an attribute of one. Operations |ike
rendering a scene or nappi ng an i nput event requiretraversing this hierarchy in

di fferent ways. Inventor does thisusing visitors called "actions." There are
different visitors forrendering, event handling, searching, filing, and

det er mi ni ngboundi ng boxes.

To nmake addi ng new nodes easi er, | nventor inplenments adoubl e-di spat ch schene for
C++. The schene relies on run-time typeinformati on and a two-di mensi onal table
in which rows representvisitors and col unms represent node classes. The cells

store apointer to the function bound to the visitor and node cl ass.

Mark Linton coined the term"Visitor" in the X Consortium sFresco Application
Tool kit specification [LP93].

YRel ated Patterns

Composite (183):Visitors can be used to apply an operation over an object

structuredefined by the Conposite pattern.

Interpreter (274):Visitor nay be applied to do the interpretation.

owe coul d use function overl oading to give these operationst he same si npl e nane,
like Visit, since the operations arealready differentiated by the paraneter

they' re passed. There arepros and cons to such overloading. On the one hand, it
reinforces thefact that each operation involves the sane analysis, albeit on

adi fferent argument. On the other hand, that m ght nake what's goingon at the
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call siteless obvious to soneone readi ng the code. Itreally boils down to whet her

you believe function overloading is goodor not.

11 f we can have doubl e-di spatch, then why nottriple or quadruple, or any other
nunber ? Actual |l y, doubl e-di spatch i s just a special case of multipledispatch, in
whi ch t he operationis chosen based on any nunber oftypes. (CLOS actual | y supports
mul tiple dispatch.) Languages thatsupport double- or multiple dispatch | essen

the need for theVisitor pattern.
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Di scussi on of Behavioral Patterns

YEncapsul ati ng Vari ation

Encapsul ating variation is a theme of many behavioral patterns. Wenan aspect
of a programchanges frequently, these patterns defi ne anobj ect that encapsul at es
that aspect. Then other parts of the prograntan collaborate with the object

whenever t hey depend on t hat aspect. The patterns usual | y defi ne an abstract cl ass
that describes theencapsul ating object, and the pattern derives its nane from

t hat obj ect . Y2For exanpl e,

a Strategy object encapsulates an algorithm (Strategy (349)),

a State object encapsul ates a state-dependent behavior (State (338)),
a Medi at or object encapsul ates the protocol betweenobjects (Mediator
(305)), and

an lterator object encapsul ates the way you access and traverse
t heconponents of an aggregate object (lterator (289)).

These patterns describe aspects of a programthat are likely tochange. Most

patterns have two ki nds of objects: the newobject(s)that encapsul ate t he aspect,
and t he existing object(s) that use thenew ones. Usually the functionality of
new obj ect s woul d be ani ntegral part of the existing objects were it not for the
pattern. Forexanpl e, codefor aStrategy woul d probablybewiredintothestrategy's

Cont ext, and code for a State woul d be i npl emented directlyinthe state's Context.

But not all object behavioral patterns partition functionality |likethis. For
exanpl e, Chain of Responsibility (251) deal swith an arbitrary nunber of objects

(i.e., a chain), all of which mayal ready exist in the system

Chain of Responsibility illustrates another difference in behavioral patterns:
Not all define static comunication rel ati onshi ps betweencl asses. Chain of
Responsi bility prescri bes communi cati on bet ween anopen- ended nunber of objects.

O her patterns involve objects that arepassed around as argunents.

Y(bj ects as Argunents

Several patterns introduce an object that's always usedas an argunment. One of
these is Visitor (366). A Visitor object is theargunent to a pol ynor phi ¢ Accept
operationonthe objectsit visits. Thevisitor i s never consi dered a part of those
obj ects, even thoughthe conventional alternativetothe patternis todistribute

Vi sitorcode across the object structure classes.
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O her patterns define objects that act as mmgic tokens to be passedaround and
i nvoked at al ater ti ne. Bot h Conmand (263) and Menento (316) fall i ntothiscategory.
In Conmand, t he token represents a request; in Menento, it represents the

i nternal state of an object at a particular tine.|ln both cases, the token can have
a conplex internal representation, but the client is never aware of it. But even
here there aredifferences. Polynorphismis inmportant in the Comand

pattern, because executing the Command object is a polynorphic operation.
Incontrast, the Menento interface is so narrowthat a memento can onl ybe passed

asavalue. Soit'slikelytopresent nopol ynorphicoperationsat all toitsclients.

¥ Should Communication be Encapsulated or

Di stri but ed?

Medi at or (305) and Cbserver (326) areconpeting patterns. The difference between
t hemi s t hat Observerdi stri butes communi cation by introduci ng Observer and Subj ect
obj ects, whereas a Medi ator object encapsul ates the communi cati on between

ot her obj ect s.

Inthe Observer pattern, thereis no single object that encapsul ates aconstraint.
I nstead, the Observer and the Subject nust cooperate tomaintain the constraint.
Communi cation patterns are determned by theway observers and subjects are

i nterconnected: a single subjectusually has many observers, and sonetines the
observer of one subjectis a subject of another observer. The Medi ator pattern
centralizesrather thandistributes. It placestheresponsibilityfor maintaininga

constraint squarely in the nediator.

We've found it easier to make reusabl e Gbservers and Subj ects t han t onake reusabl e
Medi ators. The Cbserver pattern pronotes partitioningand | oose coupling between
Observer and Subj ect, and that |eads tofiner-grained classes that are nore apt

to be reused.

On the other hand, it's easier to understand the fl owof comrunicationin Medi at or
than in Observer. Observers and subjects are usuallyconnected shortly after

they're created, andit's hard to see howtheyare connected | ater in the program
I f you know t he Qbserver pattern,then you understand that the way observers and
subj ects are connectedis i nportant, and you al so know what connections to | ook
for.However, the indirection that Cbserver introduces will still make asystem

harder to understand.

bservers in Snalltal k can be paraneterized with nessages to accessthe Subject
state, and so they are even nore reusabl e t han they are i nC++. Thi s makes Observer
nmore attractive than Mediator in Smal ltal k. Thus a Smal I tal k programer wi || often

use Observer where a C++programmer woul d use Medi ator.
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¥Decoupl i ng Senders and Receivers

When col | aborating objects refer to each other directly, they beconedependent
on each ot her, and that can have an adverse i mpact on thel ayering and reusability
of a system Command, Observer, Mediator, and Chai n of Responsibility address how

you can decoupl e senders andreceivers, but with different trade-offs.

The Command pattern supports decoupling by using a Conmand obj ect todefine the

bi ndi ng between a sender and receiver:

anlnvoker aCommand aReceiver
(sender) (receiver)
Execute() Action()

The Command obj ect provides a sinple interface for issuing the request(that is,
the Execute operation). Defining the sender-receiverconnection in a separate
object |l etsthe sender work with differentrecei vers. It keeps t he sender decoupl ed
fromthe receivers, nekingsenders easy to reuse. Mreover, you can reuse the
Comrand obj ect toparaneterize a receiver with different senders. The Conmand
patternnom nal | y requires asubcl ass for each sender-recei ver connecti on, al t hough

the pattern describes inplenentation techniques that avoi dsubcl assi ng.

The Cbserver pattern decoupl es senders (subjects) fromrecei vers(observers) by
defining aninterface for signalingchanges insubjects. Cbserver defines al ooser
sender -recei ver bi ndi ng t hanCommand, si nce a subj ect may have nmul ti pl e observers,

and their nunbercan vary at run-tine.
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aSubject anObserver  anObserver  anObserver
{sender) [receiver) {receiver) {receiver)

1

Update(}

Update()

Update(}

n

The Subject and Coserver interfaces in the Cbserver pattern aredesigned for
communi cating changes. Therefore the Observer pattern isbest for decoupling
obj ects when there are data dependenci es betweent hem

The Medi at or patterndecoupl es obj ects by havingthemrefer toeachother indirectly
through a Medi ator object.

aColleague aMediator aColleague aColleague
(sender/receiver) {sender/receiver) isenderfraceiver)

il

T

A Medi at or obj ect routes requests bet ween Col | eague obj ects andcentralizes their
communi cati on. Consequently, colleagues can onlytal k to each other through the
Medi ator interface. Because thisinterface is fixed, the Mediator mght have to
i mpl enent its owndi spat chi ng schene for added fl exi bility. Requests can be encoded

andar gunents packed in such a way that col | eagues can request anopen-ended set
of operations.
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The Medi ator pattern can reduce subclassing in a system because itcentralizes
communi cati on behavi or in one class instead ofdistributing it anmpng subcl asses.

However, ad hoc dispatchi ng schenesoften decrease type safety.
Final Iy, the Chai n of Responsi bility pattern decoupl esthe sender front hereceiver

by passing the request along a chain of potentialreceivers:

aClient aHandler aHandler aHandler
(sender) {receiver) (receiver) (receiver)

1

HandieHelp()

HandleHelp()

HandleHelp(}

T T

Sincetheinterface between senders andreceiversisfixed, Chai nof Responsibility
may al so require a customdi spatching schenme. Hence ithas the sanme type-safety
dr awbacks as Medi at or. Chai n of Responsibility is agoodway to decoupl e t he sender
and the receiverif the chainis already part of the system s structure, and one
of several objects may beinapositiontohandletherequest. Mreover,the pattern

of fers added flexibility in that the chain can be changed orextended easily.

Y Sunmary

Wthfewexceptions, behavi oral design patterns conpl enent andr ei nf or ce each ot her.
Aclass in achain of responsibility, forexanple, will probably include at |east

one application of Tenplate Method (360). The tenplate nethod can useprimtive
operations to determ ne whet her the obj ect shoul d handl e t her equest and t o choose
the obj ect toforwardto. The chai ncanusetheConmand patterntorepresent requests
as obj ects. Interpreter (274) canuse the State patterntodefine parsing contexts.

An iterator can traverse an aggregate, and avisitor can apply an operation to

each element in the aggregate.

Behavi oral patterns work well wi th other patterns, too. For exanpl e, asystemt hat
uses the Conposite (183) pattern might usea visitor to perform operations on
components of theconposition. It could use Chain of Responsibility to |let

conponent saccess gl obal properties through their parent. It could also use
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Decorator (196) to override these properties on partsof the conposition. It could
use t he Observer patterntotie oneobject structuretoanother andthe State pattern
tol et a conponentchange its behavior asits state changes. The conpositionitself
m ght be created using the approach in Builder (110), and itm ght be treated as
a Prototype (133) by sone otherpart of the system

Wl | - desi gned obj ect-oriented systens are just |ike this—they havemultiple
patterns enbedded i n t hem-but not because t heir designersnecessarily thought in
theseternms. Conpositionat the patternlevel rather thantheclass or object I evels

| ets us achi eve the samesynergy with greater ease.

2This theme runs through other kinds of patterns, too. Abstract Factory (99),
Bui | der (110), and Prototype (133) all encapsul ate know edge about howobjects
are created. Decorator (196) encapsul ates responsibility that can be added to
an obj ect. Bridge (171) separates an abstractionfromits inplenmentation, letting

them vary i ndependently.

387



Design Patterns: Elenents of Reusable Object-Oriented Software

6. Concl usi on

It's possible to argue that this book hasn't acconplished nuch. Afterall, it

doesn't present any al gorithns or progranmm ng techni ques thathaven't been used
before. It doesn't gi ve arigorous net hod f ordesi gni ng systens, nor does it devel op
a newt heory of design—itjust documents existing designs. You coul d concl ude t hat
itmakes a reasonable tutorial, perhaps, but it certainly can't offermuch to an

experi enced object-oriented designer.

We hope you think differently. Catal ogi ng design patterns isinportant. It gives
us standard nanes and definitions for thetechniques we use. If we don't study
design patterns in software, wewon't be ableto inprovethem andit'll be harder

to come up with newones.

This book is only a start. It contains sone of the npbst common designpatterns
that expert object-oriented designers use, and yet peopl ehear and | earn about
themsol el y by word of nouth or by studyi ngexi sting systens. Early drafts of the
book pronpt ed ot her peopletowite downthe designpatternsthey use, andit should
pronpt evennoreinits current form W hopethisw |l mark the start of anovenent

to docunent the expertise of software practitioners.

This chapter discusses the inpact we think design patterns willhave, how they
are related to other work in design, and how you canget involved in finding and

cat al ogi ng patterns.

YWhat to Expect from Design Patterns

Here are several ways in which the design patterns in this book canaffect the
way you desi gn object-oriented software, based on ourday-to-day experience with

t hem

A Conmmon Desi gn Vocabul ary

St udi es of expert progranmmers for conventional | anguages haveshown t hat know edge
and experience isn't organi zed sinply aroundsyntax but in |arger conceptual
structures such as algorithnms, datastructures and idionms [AS85, Cop92, Cur89,
SS86], and plans for fulfillinga particul argoal [ SE84]. Designers probably don't
t hi nk about the notation they're usingfor recording the design as nuch as they
try to match the currentdesign situation agai nst plans, algorithns, data

structures, andidi ons they have |learned in the past.

388



Design Patterns: Elenents of Reusable Object-Oriented Software

Conput er scientists name and catal og al gorithnms and data structures, but we don't
of ten name ot her kinds of patterns. Design patternsprovi de a conmon vocabul ary
for designers to use to conmuni cate, docunment, and expl ore design alternatives.
Desi gn patterns make a system seenl ess conplex by letting you tal k about it at
a higher level ofabstraction than that of a design notation or programm ng

| anguage. Desi gn patternsrai sethel evel at whi chyou desi gnand di scuss desi gnwi th

your col |l eagues.

Once you' ve absorbed t he desi gn patterns i nthis book, your desi gnvocabul ary wi ||
al nost certainly change. Youw || speak directly interns of the nanes of the desi gn
patterns. You'll find yourselfsaying things |ike, "Let's use an Cbserver here,"

or, "Let's nmake aStrategy out of these classes."

A Docunentation and Learning Aid

Knowi ng the design patterns in this book nakes it easier to understandexisting
systens. Most |arge object-oriented systems use these designpatterns. People

| earni ng object-oriented progranm ng often conplainthat the systenms they're
wor ki ng with use i nheritance in convol utedways and that it's difficult to foll ow
the flowof control. Inlargepart thisis because they do not understandthe desi gn
patterns in thesystem Learning these design patterns will help you

under st andexi sting object-oriented systens.

These design patterns can al so make you a better desi gner. Theyprovi de sol utions
to common problens. If you work wi t hobj ect-oriented systens | ong enough, you'll
probably | earn thesedesi gn patterns on your own. But reading the book will help
you | earnt hemmuch faster. Learning these patterns will hel p a novice act norel i ke

an expert.

Mor eover, describing a systemin terns of the design patterns that ituses wll
make it al ot easier tounderstand. G herw se, peoplewi |l havetoreverse-engi neer
the design to unearth the patterns it uses. Having a conmon vocabul ary nmeans you
don't have to describe the whol edesi gn pattern; you can just nane it and expect
your reader to knowit. A reader who doesn't knowthe patterns will have to | ook

themupat first, but that's still easier than reverse-engi neering.

We use these patterns in our own designs, and we've found them nval uabl e. Yet
we use the patterns i n arguably nai ve ways. W usethemto pi ck names for cl asses,
tothink about andteach good desi gn, andtodescri bedesignsinterns of the sequence
of design patterns weapplied [BJ94]. It's easy to i nagi ne noresophi sti cat ed ways
of using patterns, such as pattern-based CASE tool sor hypertext documents. But

patterns are a big hel p even withoutsophisticated tools.
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An Adjunct to Existing Methods

bj ect-oriented desi gn net hods are supposed to pronote good desi gn, toteach new
designers howto design well, and to standardize the waydesi gns are devel oped.
A design nmethod typically defines a set ofnotations (usually graphical) for

nodel i ng various aspects of a design,along with a set of rules that govern how
and when t o use eachnot ati on. Desi gn met hods usual | y descri be probl ens t hat occur
i n adesi gn, howto resol ve them and howto eval uate desi gn. But theyhaven't been

able to capture the experience of expert designers.

We believe our design patterns are an inportant piece that's beenm ssing from
obj ect-oriented design nethods. The design patterns showhow to use primtive
techni ques such as objects, inheritance, andpol ynorphism They show how to
paraneterize a systemwi th anal gorithm a behavior, astate, or the ki nd of objects
it's supposedto create. Design patterns provi de a way t o descri be nore of t he"why"
of a design and not just record the results of your decisions. The Applicability,
Consequences, and | npl enentati on sections of thedesign patterns help guide you

in the decisions you have to make.

Desi gn patterns are especially useful in turning an analysis nodelinto an

i mpl enent ati on nodel. Despite many clains that prom se asnoboth transition from
object-oriented analysis to design, in practicethe transition is anything but
smooth. A flexible and reusable designwill contain objects that aren't in the
anal ysi s nodel . Theprogramm ng | anguage and class libraries you use affect the
desi gn. Anal ysi s nodel s often nust be redesigned to nake them reusabl e. Manyof
the design patterns in the catal og address these i ssues, whichiswhy we call them

design patterns.

A full-fledged design nmethod requires nore kinds of patterns than justdesign
patterns. There can al so be anal ysis patterns, user interfacedesign patterns,
or performance-tuning patterns. But the designpatterns are an essential part,

one that's been nissing until now

A Target for Refactoring

One of the problenms in devel oping reusable software is that itoften has to be
reorgani zed or refactored [QJ90]. Designpatterns help you determ ne how to
reorgani ze a design, and theycan reduce the amount of refactoring you need to
do later.

The lifecycle of object-oriented software has several phases.Brian Foote

identifiesthese phases asthe prototyping, expansi onary, and consol i dati ng phases
[ Foo92] .
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The prototyping phase is a flurry of activity as the software isbrought tolife
t hrough rapi d prototyping and i ncrenental changes,until it meets aninitial set
of requirements and reaches adol escence. At this point, the software usually

consi sts of class hierarchies thatclosely reflect entitiesintheinitial problem

domai n. The mai n ki ndof reuse is white-box reuse by inheritance.

Once the software has reached adol escence and i s put into service, itsevol ution
is governed by two conflicting needs: (1) the software nustsatisfy nore

requi rements, and (2) the software nmust be nore reusabl e. Newr equi rements usual |y
add new cl asses and operati ons and per hapswhol e cl ass hierarchies. The software
goes t hrough an expansi onaryphase to meet new requirenents. This can't continue
for | ong, however. Eventually the software wi || becone tooinflexibleandarthritic
for further change. The cl ass hierarchies will nolongermatch any probl emdomai n.
Instead they'll reflect many probl enrdomai ns, and classes will define many

unrel ated operations andi nstance vari abl es.

To continue to evolve, the software nmust be reorgani zed in a processknown as
refactoring. This is the phase in which franmeworksoften energe. Refactoring
invol ves tearing apart classes into special-and general - purpose conponents,
novi ng operations up or down t he cl asshi erarchy, and rationalizingtheinterfaces
of classes. Thisconsolidation phase produces many new ki nds of objects, often
bydeconposi ng exi sti ng obj ects and usi ng obj ect conposi ti oninstead ofinheritance.
Hence bl ack- box reuse repl aces whi t e- box reuse. Thecontinual need to satisfy nore
requi rements along with the need fornore reuse propel s object-oriented software
through repeated phases of expansi on and consol i dati on—expansi on as new

requi rement s aresati sfied, and consol i dati on as t he sof t war e becones nor e general .

expansion
more requirements more reuse
prototyping consolidation

This cycle is unavoi dabl e. But good designers are aware of thechanges that can
pronpt refactorings. Good designers also know cl assand obj ect structures that
can hel p avoi d refactorings—their designsare robust in the face of requirenment

changes. A thoroughrequirenments analysis will highlight those requirenents that
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arelikely to change during the life of the software, and a good designw || be

robust to them

Qur design patterns capture nany of the structures that result fronrefactoring.
Using these patterns early in the life of a designprevents |ater refactorings.
But even if you don't see howto apply apattern until after you've built your
system thepatterncanstill showyou howto changeit. Designpatternsthus provide

targetsfor your refactorings.

YA Brief Hi story

The cat al og began as a part of Erich's Ph.D.thesis [ GanB1l, GanB2]. Roughly hal f
of thecurrent patterns were in his thesis. By OOPSLA '91 it was officiallyan
i ndependent catal og, and Richard had joined Erich to work on it.John started
workingonit soonthereafter. By OOPSLA' 92, Ral ph hadj oi ned t he group. W wor ked
hard to make the catalog fit forpublication at ECOOP '93, but soon we realized
that a 90- page paperwas not going to be accepted. So we sunmari zed the catal og
andsubmitted the sumary, which was accepted. We decided to turn thecatalog into

a book shortly thereafter.

Qur nanes for the patterns have changed a little al ong the way."Wapper" becane
"Decorator," "G ue" becane "Facade, ""Sol i taire" becane " Si ngl eton," and "Wl ker"
became "Visitor."A couple of patterns got dropped because they didn't seem

i mport ant enough. But ot herw sethe set of patternsinthecatal oghas changedlittle

sincethe end of 1992. The patternsthensel ves, however, haveevol ved trenmendously.

In fact, noticing that something is a pattern is the easy part. Al four of us
are actively working on buil ding object-orientedsystens, and we've found that
it's easy to spot patterns when youl ook at enough systens. But finding patterns

i s mucheasi er than describing them

If you build systens and then reflect on what you build, you will seepatterns
in what you do. But it's hard to describe patterns so thatpeopl e who don't know
themwi || understand themand realize why theyare i nportant. Experts i nmediately
recogni zed the value of thecatalog in its early stages. But the only ones who

coul d understandthe patterns were those who had already used them

Since one of the main purposes of the book was to teachobject-oriented design
to new desi gners, we knew we had to i nprove thecatal og. W expanded t he average
size of a pattern fromless than 2to nore than 10 pages by including a detail ed
nmoti vati ng exanpl e and sanpl ecode. W al so started exam ning the trade-offs and
the various waysof inplenmenting the pattern. This nmade the patterns easier to

| earn.
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Anot her inportant change over the past year has been a greater enphasis onthe
problemthat a pattern solves. It's easiest to see a pattern as asol ution, as
a technique that can be adapted and reused. It's harderto see when it is

appropriate—to characterize the problens itsolves and the context inwhichit's
the best solution. In general,it's easier to see what soneone is doing than to
know why, and t he "why" for a patternis the problemit sol ves. Know ngthe purpose
of a pattern is inmportant too, because it hel ps us choosepatterns to apply. It
al so hel ps us understand the design of existingsystens. A pattern author mnust
determ ne and characterize the probl enthat the pattern solves, even if you have

to do it after you'vediscovered its sol ution.

¥YThe Pattern Community

We aren't the only ones interested in witing books that catal og thepatterns
experts use. W are a part of alarger community interestedin patterns in general
and software-related patterns in particular.Christopher Al exander is the
architect who first studied patterns inbuildings and conmunities and devel oped
a "pattern | anguage" forgenerating them H s work has i nspired us tinme and agai n.
Soit'sfittingandworthwhiletoconpare our worktohis. Thenwe'll | ook at ot hers'

work in software-rel ated patterns.

Al exander's Pattern Languages

Ther e are many ways i n whi ch our work i s |i ke Al exander's. Bot h arebased on observi ng
existing systens and | ooking for patterns in them Both have tenpl ates for
describing patterns (although our tenplates arequite different). Both rely on
natural |anguage and | ots of exanpl esto describe patterns rather than fornmnal

| anguages, and both giverationales for each pattern.
But there are just as many ways in which our works are different:

1. Peopl e have been naki ng bui | di ngs for t housands of years, and t her eare nmany
cl assi c exanpl es to draw upon. We have been maki ng softwaresystens for a
relatively short tine, and few are considered cl assics.

Al exander gi ves an order in which his patterns shoul d be used; we havenot.

3. Al exander's patterns enphasize the problens they address, whereasdesign
patterns describe the solutions in nore detail.

4. Al exander clainms his patterns will generate conpl ete buil dings. W donot

claimthat our patterns will generate conplete prograns.

When Al exander cl ai ms you can desi gn a house sinply by applyi ng hispatterns one
after another, he has goals simlar to those ofobject-oriented design

net hodol ogi sts who gi ve st ep-by-step rul es fordesi gn. Al exander doesn't deny t he
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need for creativity; sone of hispatterns require understanding the |iving habits
of the people whow || use the building, and his belief in the "poetry" of

designinplies a level of expertise beyond the pattern |anguageitself.But his
description of how patternsgenerate designs inplies that a pattern | anguage can

make t he designprocess determ nistic and repeatable.

The Al exandri an poi nt of vi ewhas hel ped us f ocus on desi gntrade-of fs—thedifferent
"forces" that hel p shape a desi gn. Hi sinfluence made us work harder to understand
the applicability andconsequences of our patterns. It al so kept us fromworrying
about defining aformal representation of patterns. Although such arepresentati on
m ght make automating patterns possible, at this stageit's nore inportant to

expl ore the space of design patterns than toformalize it.

From Al exander's point of view, the patterns in this book do not forma pattern
| anguage. G ven the variety of software systenms that peoplebuild, it's hard to
see howwe coul d provi de a "conpl ete" set of patterns, onethat of fers step-by-step
instructions for designing anapplication. W can do that for certain classes of
applications, suchas report-witing or naking a forns-entry system But our
catal og isjust a collection of related patterns; we can't pretend it's a

pat t er nl anguage.

Infact, wethinkit'sunlikelythat therew || ever be aconpl ete pattern | anguage
for software. But it's certainly possibleto nake one that is nore conplete.
Addi tions woul d have toi ncl ude franmeworks and how to use them[Joh92], patterns
foruser interface design [BJ94], analysispatterns [Coa92], and all the other
aspects of devel opi ngsoftware. Design patterns are just a part of a larger

patternl anguage for software.

Patterns in Software

Qur first collective experience in the study of software architecturewas at an
OOPSLA' 91 wor kshop | ed by Bruce Ander son. Thewor kshop was dedi cat ed t o devel opi ng
a handbook for softwarearchitects. (Judging fromthis book, we suspect
"architectureencyclopedia" will be a nore appropriate nane than

"archi tecturehandbook.") That first workshop has led to a series of neetings,
t henost recent of which beingthe first conference on Pattern Languagesof Prograns
hel d in August 1994. This has created a community of people interested in

docunenti ng software expertise.

O course, others have had this goal as well. Donald Knuth's TheArt of Conputer
Progranmm ng [ Knu73] was one of the firstattenpts to catal og software know edge,
t hough he focused ondescribing algorithnms. Even so, the task proved too great
tofinish. The Graphics Gensseries [d a90, Arv9l, Kir92] is anothercatal og of

desi gn know edge, though it too tends to focus onal gorithns. The Domai n Specific
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Sof tware Architecture progransponsored by the U.S. Departnent of Defense [ GW2]
concentrates ongatheringarchitectural information. Theknow edge- based sof t ware
engi neering conmunity tries to representsoftware-rel ated know edge i n general .

There are many other groupswith goals at least a little |ike ours.

James Copl i en' s Advanced C++: Programi ng Styl es andl di ons [ Cop92] has i nfl uenced
us, too. The patterns inhis book tend to be nore C++-specific than our design
patterns, andhis book contains lots of |ower-level patterns as well. But there
i ssome overl ap, as we point out inour patterns. Ji mhas been active inthe pattern
comunity. He's currently working on patterns thatdescribe people's roles in

sof tware devel opnent organi zati ons.

There are a |l ot of other places in which to find descriptionsof patterns. Kent
Beck was one of the first peopleinthe softwarecommunity to advocate Chri st opher
Al exander's work. In 1993 hestarted witing a colum in The Smalltal k Report
onSnal I tal k patterns. Peter Coad has al so been col | ecting patternsfor some tine.
Hi s paper on patterns seens to us to contain nostlyanalysis patterns [Coa92];
we haven't seen his | atest patterns, though we know he is stillworking on them
We' ve heard of several books on patterns thatare in the works, but we haven't
seen any of them either. Al wecan do is let you know they're com ng. One of

these books will befromthe Pattern Languages of Prograns conference.

YAn Invitation

VWhat can you do if you are interested in patterns? First, use themand | ook for
other patterns that fit the way you design. A lot of books and articles about
patterns wil | be comi ngoutinthe next fewyears,sotherew || be plenty of sources
for new patterns. Devel op yourvocabul ary of patterns, and use it. Use it when
you talk w th otherpeople about your designs. Use it when you think and wite

about them

Second, be a critical consunmer. The design pattern catalog is theresult of hard
wor k, not just ours but that of dozens of reviewers whogave us feedback. If you
spot a problemor believe noreexplanation is needed, contact us. The sane goes
for any other catal og ofpatterns: Gve the authors feedback! One of the great
things aboutpatterns is that they nove design decisions out of the real m of

vaguei ntui tion. They | et authors be explicit about the trade-offs theynake. This
makes it easier to see what is wong with their patternsand to argue with them

Take advantage of that.

Third, look for patterns you use, and wite them down. Make them apart of your
docunent ati on. Show themto ot her people. You don'thave to be in a research | ab

to find patterns. In fact, findingrelevant patterns is nearly inpossible if you

395



Design Patterns: Elenents of Reusable Object-Oriented Software

don't have practical experience. Feel free to wite your own catal og of

patterns...butnmake sure soneone el se hel ps you beat theminto shape!

YA Parting Thought

The best designs will use many design patterns that dovetail andintertwine to
produce a greater whole. As Christopher Al exander says:
It i s possibleto make buil di ngs by stringing together patterns,
in arather |oose way. A building made like this, is an assenbly
of patterns. It is not dense. It is not profound. But it is also
possi bl eto put patterns together in such a way that many patterns
overl ap inthe sane physical space: the building is very dense; it
has manyneani ngs capturedinasnal | space; andthroughthis density,

i t becomes prof ound.

A Pattern Language [Al X+77, page xli]

1See "The poetry of thel anguage" [Al S+77].
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Appendi x A: d ossary

abstract class
A cl ass whose primary purpose is to define an interface. An abstract
class defers sonme or all of its inplenentation to subcl asses. An abstract

cl ass cannot be instantiated.

abstract coupling
G venaclass Athat maintains areference to an abstract cl ass B, cl ass
Ais said to be abstractly coupled to B. W call this abstract coupling

because A refers to a type of object, not a concrete object.

abstract operation
An operation that declares a signature but doesn't inplenment it. In

C++, an abstract operation corresponds to a pure virtual nmenmber function.

acquai ntance rel ationship

Acl ass that refers toanother cl ass has an acquai ntance wit hthat cl ass.

aggregat e obj ect
An obj ect that's conposed of subobjects. The subobjects are called the

aggregate's parts, and the aggregate is responsible for them
aggregation rel ationship

The rel ationshi p of an aggregate object toits parts. A class defines

this relationship for its instances (e.g., aggregate objects).
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bl ack-box reuse
A styl e of reuse based on object conposition. Conposed objects revea

no internal details to each other and are thus anal ogous to "bl ack boxes."

cl ass
Acl ass defines an object's interface and inplenmentation. It specifies
the object'sinternal representation and defines the operations the object

can perform

cl ass di agram
Adi agramt hat depi cts cl asses, their internal structureandoperations,

and the static relationships between them

cl ass operation
An operation targeted to a class and not to an individual object. In

C++, class operations are are called static nenber functions.

concrete cl ass

A cl ass having no abstract operations. It can be instantiated

constructor

In C++, an operation that is automatically invoked to initialize new

i nstances.

coupling

The degree to which software conmponents depend on each ot her

del egati on

An inplementati on nechani smin which an object forwards or del egates
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a request to anot her object. The del egate carries out the request on behal f

of the original object.

design pattern
Adesignpatternsystematicallynanes, notivates, and expl ai ns a gener al
design that addresses a recurring design problem in object-oriented
systens. |t descri bestheproblem thesolution, whentoapplythesolution,
and its consequences. It al so gives inplenentation hints and exanpl es. The
solution is a general arrangenment of objects and cl asses that solve the
problem The solution is custoni zed and i npl enented to sol ve t he probl en

in a particular context.

destructor
InC++, anoperationthat i sautomaticallyinvokedtofinalize an object

that is about to be del eted.

dynam ¢ bi ndi ng
The run-time association of a request to an object and one of its

operations. In C++, only virtual functions are dynanmically bound.

encapsul ati on
The result of hiding arepresentation and inplenentationin an object.
The representation is not visible and cannot be accessed directly from
outside the object. Operations are the only way to access and nodify an

obj ect's representation.

f r amewor k
A set of cooperating classes that makes up a reusable design for a

specific class of software. A framework provides architectural guidance

399



Design Patterns: Elenents of Reusable Object-Oriented Software

by partitioning the design into abstract classes and defining their
responsi bilities and col | aborations. Adevel oper custom zes t he franmework
to a particular application by subclassing and conposing instances of

framework cl asses.

friend cl ass

In C++, a class that has the sane access rights to the operati ons and

data of a class as that class itself.

i nheritance

A relationship that defines one entity in ternms of another. C ass
inheritance defines a new class in terns of one or nore parent classes.
The newclass inherits its interface and i npl enentation fromits parents.
The new class is called a subclass or (in C++) a derived class. d ass
inheritance conbines interface i nheritance and i mpl ement ati on
inheritance. Interfaceinheritance defines anewinterfaceinterns of one
or nore existing interfaces. |nplenmentation inheritance defines a new

inplenentation in terms of one or nmore existing inplenentations.

instance variabl e

A piece of data that defines part of an object's representation. C++

uses the term data nenber.

interaction diagram

A di agram that shows the flow of requests between objects.

interface

The set of all signatures defined by an object's operations. The

interface describes the set of requests to which an object can respond.
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met acl ass
Cl asses are objects in Smalltalk. A netaclass is the class of a class

obj ect .

m xin class
Acl ass desi gned t o be conbi ned wi t h ot her cl asses t hrough i nheritance.

M xin classes are usually abstract.

obj ect
Arun-tineentitythat packages bot h dataandthe proceduresthat operate

on that data.

obj ect conposition

Assenbl i ng or conposing objects to get nore conpl ex behavior.

obj ect di agram

A diagram that depicts a particul ar object structure at run-tine.

obj ect reference

A value that identifies another object.

operation
An obj ect's data can be nmani pul ated only by its operations. An object
perfornms an operation when it receives a request. I n C++, operations are

cal l ed nmenber functions. Smalltal k uses the term net hod.

overriding

Redef i ni ng an operation (inherited froma parent class) in a subcl ass.
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paraneterized type
Atype that | eaves sone constituent types unspecified. The unspecified
types are suppli ed as paraneters at the point of use. I n C++, paraneterized

types are called tenpl ates.

parent cl ass
The class fromwhi ch another class inherits. Synonyns are supercl ass

(Smal Ital k), base class (C++), and ancestor cl ass.

pol ynor phi sm
The ability to substitute objects of matchinginterface for one anot her

at run-tine.

private inheritance

In C++, a class inherited solely for its inplenentation.

pr ot ocol
Ext ends t he concept of an interface toinclude the all owabl e sequences

of requests.

receiver

The target object of a request.

request
An obj ect perforns anoperati onwhenit receives acorrespondi ng request

from anot her object. A commpn synonym for request is message.

si ghature
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An operation'ssignaturedefinesitsnane, paraneters, andreturnval ue.

subcl ass
A class that inherits fromanother class. In C++, a subclass is called

a derived cl ass.

subsystem
An i ndependent group of classes that collaborate to fulfill a set of

responsibilities.

subt ype
Atype is a subtype of another if its interface contains the interface

of the other type.

supertype

The parent type fromwhich a type inherits.

tool kit
A collection of classes that provides useful functionality but does

not define the design of an application.

type

The nane of a particular interface.

whi t e- box reuse
A style of reuse based on class inheritance. A subclass reuses the
interface and i npl ementation of its parent class, but it may have access

to otherw se private aspects of its parent.
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Appendi x B: Guide to Notation

We use di agrans throughout the book to illustrate i nportant ideas. Some di agrans
are informal, like a screen shot of a dialog box or aschematic showing a tree
of objects. But the design patterns inparticular use nore fornal notations to
denot e rel ati onshi ps andi nteracti ons between cl asses and obj ects. Thi s appendi x

describesthese notations in detail.
We use three different diagrammatic notations:

1. A class diagramdepicts classes, their structure, andthe static
rel ati onshi ps between them
An obj ect di agram depicts a particular object structureat run-tine.

3. An interaction diagram shows the flow of requests betweenobjects.

Each design pattern includes at | east one cl ass di agram Theother notations are
used as needed to suppl ement the discussion. The class and object diagrans are
based on OMI (Object MdelingTechni que) [RBP+91, Run®4].!The interaction

di agranmsare taken from Qbjectory [JCIM2] and the Booch nethod [Boo94]. These

notations are sumari zedon the inside back cover of the book.

¥ ass Di agram

Fi gure B.la shows the OMI notation for abstract and concrete classes. Aclassis
denoted by a box with the class nane in bold type at the top. The key operations
of the class appear bel owthe cl ass nanme. Anyinstance vari abl es appear bel owthe
operations. Type informationis optional; we use the C++ convention, which puts
the t ype nanebef ore t he nane of the operation(tosignifythereturntype),instance
vari abl e, or actual paranmeter. Slanted type i ndi catesthat the class or operation

is abstract.
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AbstractClassName ConcreteClassName
AbsfractOparationi(} Operation()
Type AbstractOperationzy} Type Operation2()

instanceVariable1
Type instanceVariable2

(a) Abstract and concrate classes

Client

(b} Participant Client class {left) and implicit Client class (right)

shapes
Drawing Shape
CreationTool ----------- = LineShape ————— = Color
(c) Class refationships

Drawing
for each shape | =

Draw() ©---f-—===-===-"1 ~ shape->Draw()
}

{d) Pseudocode annotation

Figure B.1l: Class diagramnotation

In sone design patterns it's hel pful to see where client classes reference
Partici pant classes. Wien a pattern includes a Cientclass as one of its
partici pants (neaning the client has aresponsibility inthe pattern), the dient
appears as an ordinaryclass. This is true in Flyweight (218), for exanple. Wen
the pattern does not include a Client participant(i.e., clients have no

responsibilities in the pattern), butincluding it nevertheless clarifies which
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pattern participantsinteract withclients, thenthe dient classis showningray,
asshown in Figure B.1b. An exanple is Proxy (233). A gray Ciental so nakes it
clear that we haven't accidentally omtted the Clientfromthe Participants

di scussi on.

Fi gure B. 1c shows vari ousrel ati onshi ps between cl asses. The OMI notati on for
class inheritanceis a triangle connecting a subclass (LineShape in the figure)
to itsparent class (Shape). An object reference representing a part-of
oraggregation rel ationship is indicated by an arrowheaded |ine wi th adi anond at
the base. The arrow points to the class that is aggregated(e.g., Shape). An
arrowheaded | i ne wi t hout t he di anond denot esacquai nt ance (e.g., a Li neShape keeps
areferencetoaCol or obj ect, whi chot her shapes may share). Ananefor thereference

may appearnear the base to distinguish it from otherreferences.?

Anot her useful thing to show is which classes instantiate whichothers. W use
a dashed arrowheaded | ine to indicate this, sinceOMI doesn't support it. W call
thisthe "creates" relationship. Thearrowpointstotheclassthat'sinstantiated.

In Figure B.1lc, CreationTool creates LineShape objects.

OMT al so defines afilled circle to mean "nore than one." Wenthe circl e appears
at the head of a reference, it means multipl eobjects are being referenced or
aggregated. Figure B.1lc shows that Drawi ng aggregatesmultiple objects of type

Shape.

Finally, we've augnented OMI with pseudocode annotations to |etus sketch the
i mpl enent ati ons of operations. Figure B.1d shows the pseudocode annotati onfor

the Draw operation on the Draw ng cl ass.
¥(bj ect Di agram

An obj ect di agramshows i nst ances excl usively. It provi des asnapshot of the objects
in a design pattern. The objects are nanmed"aSonet hi ng", where Sonething is the
cl ass of t he obj ect. Qur synbol for an object (nodifiedslightly fronstandard OMI)
is arounded box with aline separatingthe objectnanme fromany obj ect references.

Arrows indicate the objectreferenced. Figure B.2 shows an exanpl e.
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abDrawing

shape[(] #—]

shape[1] #

alLineShape aCircleShape

Figure B.2: bject diagramnotation

YInteraction D agram

An interaction diagram shows the order in which requests between objectsget
executed. Figure B.3 is aninteraction diagramthat shows how a shape gets added

to a draw ng.

aCreationTool aDrawing alLineShape

|

new LineShape

AddlalineShape)
1 Refresh()
Draw()
-
Figure B.3: Interaction diagramnotation
Time flows fromtop to bottomin an interaction diagram A solidvertical line

indicates the lifetime of a particular object. Thenam ng convention for objects
i s the same as for obj ect di agrans—t hecl ass nane prefi xed by theletter "a" (e.g.,
aShape). If the objectdoesn't get instantiated until after the beginning of tinme
as recordedinthe diagram thenits vertical |ine appears dashed until the poi nt of

creation.
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A vertical rectangle shows that an object is active; that is, it ishandling a
request. The operation can send requests to other objects;these are indicated
with a horizontal arrowpointing to the receivingobject. The name of the request
is shown above the arrow. A requestto create an object is shown with a dashed

arrowheaded | i ne. Arequest to the sendi ng obj ect itself points back tothe sender.

Figure B.3 shows that the first request is from aCreationTool tocreate
aLi neShape. Later, alLi neShape i s Added t o aDrawi ng, whi chpronpts aDrawi ng t o send
a Refresh request toitself. Note thataDraw ng sends a Drawrequest to aLi neShape

as part of the Refreshoperation.

OMI uses the term "object diagrant torefer to class diagrams. W use "object

di agram' exclusively torefer to diagrams of object structures.

20MT al so defi nes associ ati onshet ween cl asses, whi ch appear as pl ai n | i nes bet ween
cl ass boxes. Associ ations are bidirectional. Al though associations are
appropriateduri ng anal ysis, we feel they're too high-level for expressing
therel ati onshi ps in design patterns, sinply because associ ati ons nust be mapped
down to object references or pointers during design. Object references are
intrinsically directed and are thereforebetter suited to the rel ati onshi ps that
concern us. For exanpl e, Drawi ng knows about Shapes, but the Shapes don't know
about theDrawingthey'rein. Youcan't expressthisrelationshipwthassociations

al one.
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Appendi x C. Foundation C asses

Thi s appendi x docunents the foundation cl asses we use in the C++sanpl e code of
several design patterns. W've intentionally kept the cl asses sinple and m ni mal .

We describe the follow ng classes:

List, an ordered |ist of objects.

Iterator,theinterfacefor accessi ng an aggregate' s objectsinasequence.
Listlterator,an iterator for traversing a List.

Poi nt, a two-di nensi onal point.

Rect, an axis-aligned rectangle.

Some newer C++ st andard types may not be avail abl e on al | conpilers. I nparticular,

if your conpiler doesn't definebool, then define it manually as

typedef int bool;
const int true = 1;

const int false = O;
¥YLi st

The List class tenplate provides a basic container forstoring an ordered |i st
of objects. List stores el ements byval ue, which neans it works for built-in types
as well as classinstances. For exanple, List declares a list ofints. But npst
of the patterns use List tostore pointers to objects, as in List. That waylLi st

can be used for heterogeneous |ists.

For conveni ence, List al so provides synonyns for stackoperations, whi ch make code

that uses List for stacks noreexplicit wthout defining another class.

tenplate <class Itenr

class List {

public:
Li st (l ong size = DEFAULT_LI ST_CAPACI TY) ;
Li st (List&);
~List();

Li st & operator=(const List&);

long Count () const;

Item& Cet (1 ong index) const;
Item& First() const;

Item& Last() const;

bool 1ncludes(const Item& const;
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voi d Append(const Iteng&);
voi d Prepend(const |ten®);

voi d Renove(const lteng);
voi d Renovelast ();

voi d RenoveFirst();

voi d RenoveAll ();

Item& Top() const;
voi d Push(const Itenmg);
Item& Pop();

}

The followi ng sections describe these operations in greater detail

Construction, Destruction, Initialization, and Assi gnnment
Li st (1 ong size)

initializesthelist. The size paraneter isahint fortheinitial nunber

of el enents.
Li st (List&)

overrides the default copy constructor so that nenber data

areinitialized properly.
~Li st ()
frees the list's internal data structures but not theelenents in the
list. The class is not designed for subcl assing;therefore the destructor
isn't virtual

Li st & operator=(const List&)

i mpl ements the assignment operation to assign nenber data properly.
Accessi ng

These operations provide basic access to the list's elenments.

I ong Count () const
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returns the nunber of objects in the list.

Item& Get (long index) const

returns the object at the given index.
Item& First() const

returns the first object in the list.
Item& Last() const

returns the last object in the list.

Addi ng

voi d Append(const |tem&)

adds the argunent to the list, making it the last el ement.

voi d Prepend(const |ten&)

adds the argument to the list, making it the first el ement.

Renovi ng

voi d Renmove(const |tem&)

renoves the given element fromthe list. This operation requiresthat

the type of elenents in the |list supports the

voi d RenmpveFirst ()

renoves the first element fromthe list.

voi d Renmpvelast ()

removes the last element fromthe list.

voi d RermoveAll ()

removes all elenents fromthe list.

operator for comnparison.
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Stack Interface

Item& Top() const

returns the top elenent (when the List is viewed as a stack).

voi d Push(const |temg)

pushes the el ement onto the stack.

Item& Pop()

pops the top el enent fromthe stack.

Yl terator

Iterator is an abstract class that defines a traversalinterface for aggregates.

tenpl ate <class ltene

class lterator {

public:
virtual void First() = 0;
virtual void Next() = O;
virtual bool |sDone() const = O;
virtual Item Currentlten{) const = 0;
prot ect ed:
Iterator();
H

The operations do the follow ng:

virtual void First()

positions the iterator to the first object in the aggregate.

virtual void Next()

positions the iterator to the next object in the sequence.

virtual bool |sDone() const

returns true when there are no nore objects in the sequence.

virtual lItem Currentlten() const
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returns the object at the current position in the sequence

YListlterator

Listlterator inplements the Iterator interfaceto traverse List objects. Its

constructor takes a list to traverse asan argunent.

tenplate <class Itenr

class Listlterator : public Iterator<itenp {

public:
Listlterator(const List<ltenp* aList);
virtual void First();
virtual void Next();
virtual bool |sDone() const;
virtual Item Currentlten{) const;

}

Y Poi nt

Point represents a point in a two-di nmensional Cartesiancoordinate space. Point
supports sone mninmal vector arithmetic. The coordinates of a Point are defined

as
typedef float Coord;
Point's operations are sel f-explanatory.

class Point {
public:

static const Point Zero;

Poi nt (Coord x = 0.0, Coord y = 0.0);

Coord X() const; void X(Coord Xx);
Coord Y() const; void Y(Coord y);

friend Point operator+(const Pointé& const Point&);
friend Point operator-(const Pointé& const Pointg&);
friend Point operator*(const Point& const Point&);

friend Point operator/(const Point& const Point&);

Poi nt & oper at or +=(const Poi nt &) ;
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Poi nt & oper at or-=(const Point&);
Poi nt & oper at or*=(const Point &) ;

Poi nt & operat or/ =(const Point&);

Poi nt operator-();

friend bool operator==(const Pointé& const Pointg&);

friend bool operator!=(const Pointé& const Pointg&);

friend ostream& operator<<(ostream& const Point&);
friend istream& operator>>(istreanm& Point&);

}s

The static nmenber Zero represents Point(0, 0).

YRect

Rect represents an axis-aligned rectangle. ARect is defined by an origin point

and an extent (thatis, wi dt h and hei ght). The Rect operations aresel f-expl anatory.

cl ass Rect {

public:
static const Rect Zero;
Rect (Coord x, Coord y, Coord w, Coord h);
Rect (const Point& origin, const Point& extent);
Coord Wdth() const; voi d Wdth(Coord);
Coord Height() const; void Height(Coord);
Coord Left() const; voi d Left(Coord);
Coord Botton{) const; void Bottom(Coord);
Point& Origin() const; void Oigin(const Point&);
Poi nt & Extent () const; void Extent(const Point&);
voi d MoveTo(const Point&);
voi d MoveBy(const Point&);
bool |sEmpty() const;
bool Contai ns(const Point&) const;
}

The static nenber Zero is equivalent to the rectangle
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Rect (Point (0, 0), Point(0, 0));
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