OPERATING SYSTEMS |

PPPPPPPPPPPPPPPPPPPPPPP

File System
Implementation

FILES. DIRECTORIES (FOLDERS). FILE SYSTEM PROTECTION.

BIBLIOGRAPHY
1. SILBERSCHATZ, GALVIN, AND GAGNE, "OPERATING SYSTEM CONCEPTS", 8TH EDITION, 2009, WILEY

2. A. TANNENBAUM, “MODERN OPERATING SYSTEMS”, 3RO EDITION, 2008, PRENTICE HALL

File System Implementation
Table of Contents

JFile-System Structure

JFile-System Implementation
Directory Implementation
JAllocation Methods
JFree-Space Management
JEfficiency and Performance
JRecovery

CINFS

JExample: WAFL File System

File System Implementation
Objectives

JTo describe the details of implementing local file systems and directory structures

JTo describe the implementation of remote file systems

JTo discuss block allocation and free-block algorithms and trade-offs

File System Implementation
File-System Structure

_JFile structure
Logical storage unit
ICollection of related information

File system — resides on secondary storage (disks)
(IProvided user interface to storage, mapping logical to physical

(JProvides efficient and convenient access to disk by allowing data to be stored, located retrieved easily

IDisk — provides in-place rewrite and random access
(J1/0 transfers performed in blocks of sectors (usually 512 bytes)

JFile control block — storage structure consisting of information about a file
IDevice driver controls the physical device

JFile system — organized into layers

File System Implementation

Layered File System

application programs

ﬂ

logical file system

J

file-organization module

J

basic file system

J

I/O control

J

devices

File System Implementation
File System Layers

IDevice drivers manage |/O devices at the I/O control layer

JGiven commands like “read drivel, cylinder 72, track 2, sector 10, into memory location 1060” outputs
low-level hardware specific commands to hardware controller

IBasic file system given command like “retrieve block 123” translates to device driver

JAlso manages memory buffers and caches (allocation, freeing, replacement) application programs
L) Buffers hold data in transit

() Caches hold frequently used data logical file system

JFile organization module understands files, logical address, and physical blocks u
U Translates logical block # to physical block # file-organization module
L) Manages free space, disk allocation u

basic file system

¢

1/O control

J

devices

File System Implementation
File System Layers

JLogical file system manages metadata information

JTranslates file name into file number, file handle, location by maintaining file control blocks (inodes in
UNIX)

IDirectory management
JProtection

ILayering useful for reducing complexity and redundancy, but adds overhead and can decrease
performance

JLogical layers can be implemented by any coding method according to OS designer

IMany file systems, sometimes many within an operating system

JEach with its own format (CD-ROM is ISO 9660; Unix has UFS, FFS; Windows has FAT, FAT32, NTFS as
well as floppy, CD, DVD Blu-ray, Linux has more than 40 types, with extended file system ext2 and ext3
leading; plus distributed file systems, etc.)

INew ones still arriving — ZFS, GoogleFS, Oracle ASM, FUSE

File System Implementation
File System Layers

(JWe have system calls at the API level, but how do we implement
their functions?

1 On-disk and in-memory structures

(IBoot control block contains info needed by system to boot OS from
that volume

I Needed if volume contains OS, usually first block of volume

(JVolume control block (superblock, master file table) contains
volume details file permissions

I Total # of blocks, # of free blocks, block size, free block pointers or array

file dates (create, access, write)

CIDirectory structure organizes the files

JNames and inode numbers, master file table file owner, group, ACL
(1Per-file File Control Block (FCB) contains many details about the file file size
Jinode number, permissions, size, dates
INFTS stores into in master file table using relational DB structures file data blocks or pointers to file data blocks

File System Implementation
In-Memory File System Structures

IMount table storing file system mounts, mount points,

file system types []
R]
IThe following figure illustrates the necessary file system | b ey
. . open (file name) =E|
structures provided by the operating systems directory structure s N
DF|gU re (a) refers to Opening a f||e user space kernel(:)emory secondary storage
JFigure (b) refers to reading a file
index l:l I:I:l
JPlus buffers hold data blocks from secondary storage [
= A
| 7 data blocks
JOpen returns a file handle for subsequent use read (index) ~]
per-p;rlocesbsI systefT-wictj)le file-control block
. .. open-file table open-file table
)Data from read eventually copied to specified user i i

user space kernel memory secondary storage

process memory address (b)

File System Implementation
Partitions and Mounting

Partition can be a volume containing a file system (“cooked”) or raw — just a sequence of blocks
with no file system

IBoot block can point to boot volume or boot loader set of blocks that contain enough code to
know how to load the kernel from the file system

JOr a boot management program for multi-OS booting

IRoot partition contains the OS, other partitions can hold other OSes, other file systems, or be
raw

IMounted at boot time
JOther partitions can mount automatically or manually

At mount time, file system consistency checked
1lIs all metadata correct?
U If not, fix it, try again
U If yes, add to mount table, allow access

File System Implementation
Virtual File Systems

JVirtual File Systems (VFS) on UNIX provide an
object-oriented way of implementing file systems

file-system interface

IVFS allows the same system call interface (the
API) to be used for different types of file systems

Separates file-system generic operations from
implementation details

r

VES interface

JdImplementation can be one of many file systems ! !

types, or network file system local file system local file system remote file system
type 1 type 2 type 1

U Implements vnodes which hold inodes or network file details

JThen dispatches operation to appropriate file

system implementation routines — y
JThe APl is to the VFS interface, rather than any E i network

specific type of file system

File System Implementation
Virtual File System Implementation

IFor example, Linux has four object types:
Jinode, file, superblock, dentry

JVFS defines set of operations on the objects that must be implemented
JEvery object has a pointer to a function table

L) Function table has addresses of routines to implement that function on that object

U For example:

int open(. . .) — Open a file

int close(. . .) — Close an already-open file
(Issize t read(. . .) — Read from a file
(Ussize t write(. . .) — Write to a file

Uint mmap(. . .) — Memory-map a file

File System Implementation
Directory Implementation

Linear list of file names with pointer to the data blocks
JSimple to program

JTime-consuming to execute
Ul Linear search time

() Could keep ordered alphabetically via linked list or use B+ tree

IHash Table — linear list with hash data structure
Decreases directory search time

ICollisions — situations where two file names hash to the same location
1Only good if entries are fixed size, or use chained-overflow method

File System Implementation
Allocation Methods - Contiguous

JAn allocation method refers to how Mapping from logical to physical
disk blocks are allocated for files: T —. g
irectory
o . . v A
1Contiguous allocation — each file P fle start length
occupies set of contiguous blocks obd 1L ZDf3D count 0 2
IBest performance in most cases al] s[1 el 7[] mail 19 6
Simple — only starting location (block #) —Q 8] o[J10J11] 'f‘St 22 ‘2‘
and length (number of blocks) are LA/512 12[,13514Dt1r55
required A
) L] 16[_117[_]18[_J19[]
JProblems include finding space for file, R mail
knowing file size, external 20 J21[J22[23]
fragmentation, need for compaction 2425126 [127[]
Xt . KT list
off-line (downtime) or on-line SRS
N g

Blocktobe accessed = Q + starting address
Displacementintoblock=R

File System Implementation

Extend-Based Systems

IMany newer file systems (i.e., Veritas File System) use a modified contiguous allocation scheme

JExtent-based file systems allocate disk blocks in extents

JAn extent is a contiguous block of disks
JExtents are allocated for file allocation

_JA file consists of one or more extents

File System Implementation

Allocation Methods - Linked

JLinked allocation — each file a linked list of blocks
JFile ends at nil pointer

INo external fragmentation

JEach block contains pointer to next block

INo compaction, external fragmentation

Free space management system called when new block needed

JImprove efficiency by clustering blocks into groups but increases internal fragmentation
JReliability can be a problem

JLocating a block can take many 1/Os and disk seeks

JFAT (File Allocation Table) variation
IBeginning of volume has table, indexed by block number

IMuch like a linked list, but faster on disk and cacheable
INew block allocation simple

File System Implementation
Linked Allocation

JEach file is a linked list of disk blocks: blocks may be scattered anywhere on the disk

block = pointer

File System Implementation
Linked Allocation

JIMapping
IBlock to be accessed is the Qth block in the linked chain of blocks representing the file
IDisplacement into block =R + 1

P N directory

Q v file start end
/ o7 1@ 207 307 jeep 9 25
LA/511
I 40 51 61 71
R

81 pl1o2]11[]
12 13 J14f 115]
[17118]19[]
20[_]21 2|:|23|:|
24[_]25[1[26[_]27[]
28[J29[30[31[]
R

16

File System Implementation
File-Allocation Table

directory entry

[test | eee | 217 |—

name start block

—» 217 618

339 R

618 339 |e—-—

no. of disk blocks —1

FAT

File System Implementation

Allocation Methods - Indexed

JIndexed allocation
Each file has its own index block(s) of pointers to its data blocks

i i N direct
JLogical view @ irectory
file index block
S o[] 1[1\?[3 a[] jeep 19
4[] 5[] 7]

Vv

8[] o[J1o[\11[]
12[113 14D\l
16
20 J21[J22[23]]
24 J25[J26[127[]

28[|29 130[131]
index table o

Example of indexed allocation

\4

V

v

File System Implementation
Allocation Methods - Indexed

INeed index table

JRandom access
IDynamic access without external fragmentation, but have overhead of index block

IMapping from logical to physical in a file of maximum size of 256K bytes and block size of 512
bytes. We need only 1 block for index table

/Q

LA/512
\

R

Q =displacementintoindextable
R = displacementinto block

File System Implementation

Indexed Allocation — Mapping

IMapping from logical to physical in a file of unbounded length (block size of 512 words)

ILinked scheme — Link blocks of index table (no limit on size)

Q,

LA/ (512x511) <::::j

Q, = block of index table
R, is usedas follows:

Ry

R,/512

Q, = displacementinto blockof indextable
R, displacement into block of file:

File System Implementation

Indexed Allocation — Mapping

JTwo-level index (4K blocks could store 1,024 four-byte pointers in outer index -> 1,048,567 data
blocks and file size of up to 4GB)

Q,
LA/ (512x512) <
R

Q, = displacementinto outer-index
R, is used as follows:

1

Q
R,/ 512 < 2
R

2

Q, = displacementinto block of index table
R, displacementinto block of file:

File System Implementation

Indexed Allocation — Mapping

S\

T~
T

index table file

File System Implementation
Combined scheme — UNIX UFS

J4KB per block, 32-bit addresses

INote: More index blocks than can be addressed with 32-bit file pointer

mode
owners (2)
timestamps (3)
.
size block count
direct blocks = .

s+—>{ data] -
single indirect ——>E g
double indirect = >|_: > 2—{ data |
triple indirect L’ :?
| &—>{ data |

File System Implementation
Performance

IBest method depends on file access type
JContiguous great for sequential and random

JLinked good for sequential, not random
IDeclare access type at creation -> select either contiguous or linked

JIndexed more complex
JSingle block access could require 2 index block reads then data block read

I Clustering can help improve throughput, reduce CPU overhead

File System Implementation
Performance

JAdding instructions to the execution path to save one disk |/O is reasonable

Jintel Core i7 Extreme Edition 990x (2011) at 3.46Ghz = 159,000 MIPS
U http://en.wikipedia.org/wiki/Instructions_per_second

ITypical disk drive at 250 1/Os per second
(1 159,000 MIPS / 250 = 630 million instructions during one disk 1/0

JFast SSD drives provide 60,000 I0OPS
(1 159,000 MIPS / 60,000 = 2.65 millions instructions during one disk I/0

File System Implementation
Free-Space Management

JFile system maintains free-space list to track available blocks/clusters
J(Using term “block” for simplicity)

IBit vector or bit map (n blocks)

1 = block[i] free
bit[i] =
0 = block][i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

File System Implementation
Free-Space Management

IBit map requires extra space

JExample:
U block size = 4KB = 212 bytes
U disk size = 240 bytes (1 terabyte)
U n =24%0/212 = 228 bits (or 32MB)
U if clusters of 4 blocks -> 8MB of memory

JEasy to get contiguous files

File System Implementation

Linked Free Space List on Disk

) Linked list (free list) -,
JCannot get contiguous space easily R

INo waste of space free-space list head

INo need to traverse the entire list (if # free blocks
recorded) 4

20 |21[|22F 123[]
24[125[J26] |27

28 129 |30[131]
N

File System Implementation
Free Space Management

JIGrouping

IModify linked list to store address of next n-1 free blocks in first free block, plus a pointer to next block
that contains free-block-pointers (like this one)

JCounting

Because space is frequently contiguously used and freed, with contiguous-allocation allocation,
extents, or clustering

Ll Keep address of first free block and count of following free blocks

U Free space list then has entries containing addresses and counts

File System Implementation
Free Space Management

ISpace Maps
Used in ZFS

JConsider meta-data I/O on very large file systems

U Full data structures like bit maps couldn’t fit in memory -> thousands of I/Os

IDivides device space into metaslab units and manages metaslabs
U Given volume can contain hundreds of metaslabs

(JEach metaslab has associated space map
L) Uses counting algorithm

But records to log file rather than file system
U Log of all block activity, in time order, in counting format

JIMetaslab activity -> load space map into memory in balanced-tree structure, indexed by offset
U Replay log into that structure

L) Combine contiguous free blocks into single entry

File System Implementation
Efficiency and Performance

JEfficiency dependent on:
(Disk allocation and directory algorithms
Types of data kept in file’s directory entry
(JPre-allocation or as-needed allocation of metadata structures
(IFixed-size or varying-size data structures

IPerformance
(lKeeping data and metadata close together

(IBuffer cache — separate section of main memory for frequently used blocks
LISynchronous writes sometimes requested by apps or needed by OS

U No buffering / caching — writes must hit disk before acknowledgement
L Asynchronous writes more common, buffer-able, faster

(IFree-behind and read-ahead — techniques to optimize sequential access
(1Reads frequently slower than writes

File System Implementation

Page Cache

JA page cache caches pages rather than disk

blocks using virtual memory techniques and . /O using
 rosces g Y q memory-mapped I/O read() and write()

IMemory-mapped I/O uses a page cache I

JRoutine /0 through the file system uses the page cache

buffer (disk) cache \
IThis leads to the figure on the right

buffer cache

|

file system

File System Implementation

Unified Buffer Cache

JA unified buffer cache uses the same page
cache to cache both memory-mapped pages and
ordinary file system 1/0 to avoid double caching

IBut which caches get priority, and what memory-mapped I/O read(I/)Oa‘,f'zir\',ﬁite()

replacement algorithms to use? \ /

buffer cache

I

file system

File System Implementation
Recovery

I Consistency checking — compares data in directory structure with data blocks on disk, and tries
to fix inconsistencies

_JCan be slow and sometimes fails

JUse system programs to back up data from disk to another storage device (magnetic tape,
other magnetic disk, optical)

IRecover lost file or disk by restoring data from backup

File System Implementation

Log Structured File Systems

JLog structured (or journaling) file systems record each metadata update to the file system as a
transaction

JAll transactions are written to a log
J A transaction is considered committed once it is written to the log (sequentially)
JSometimes to a separate device or section of disk
JHowever, the file system may not yet be updated

JThe transactions in the log are asynchronously written to the file system structures
) When the file system structures are modified, the transaction is removed from the log

JIf the file system crashes, all remaining transactions in the log must still be performed

Faster recovery from crash, removes chance of inconsistency of metadata

File System Implementation

The Sun Network File System (NFS)

JAn implementation and a specification of a software system for accessing remote files across
LANs (or WANS)

The implementation is part of the Solaris and SunOS operating systems running on Sun
workstations using an unreliable datagram protocol (UDP/IP protocol and Ethernet

JInterconnected workstations viewed as a set of independent machines with independent file
systems, which allows sharing among these file systems in a transparent manner
JA remote directory is mounted over a local file system directory

U The mounted directory looks like an integral subtree of the local file system, replacing the subtree descending from the local
directory

ISpecification of the remote directory for the mount operation is nontransparent; the host name of the
remote directory has to be provided

Ul Files in the remote directory can then be accessed in a transparent manner

JSubject to access-rights accreditation, potentially any file system (or directory within a file system), can
be mounted remotely on top of any local directory

File System Implementation

The Sun Network File System (NFS)

INFS is designed to operate in a
heterogeneous environment of different
machines, operating systems, and
network architectures; the NFS
specifications independent of these
media

JThis independence is achieved through

the use of RPC primitives built on top of focal shared dir2
an External Data Representation (XDR)
protocol used between two dir
implementation-independent interfaces

JThe NFS specification distinguishes
between the services provided by a
mount mechanism and the actual
remote-file-access services

Threeindependent file-systems

File System Implementation

Mounting in NFS

Protocol establishes initial logical connection U-
between server and client

IMount operation includes name of remote
directory to be mounted and name of server O usr
machine storing it

) Mount reguest is mapped to corresponding RPC and

forwarded to mount server running on server machine
L) Export list — specifies local file systems that server (Q local
exports for mounting, along with names of machines
that are permitted to mount them
JFollowing a mount request that conforms to its o dirt
export list, the server returns a file handle—a key P
for further accesses F—\
AE—

JFile handle — a file-system identifier, and an inode
number to identify the mounted directory within (a) (b)
the exported file system

OThe mount operation changes only the user’s view a) Mounts
and does not affect the server side b) Cascading mounts

File System Implementation

NFS Protocol

IProvides a set of remote procedure calls for remote file operations. The procedures support
the following operations:

searching for a file within a directory

Jreading a set of directory entries
Imanipulating links and directories
Jaccessing file attributes

Jreading and writing files

INFS servers are stateless; each request has to provide a full set of arguments (NFS V4 is just
coming available — very different, stateful)

IModified data must be committed to the server’s disk before results are returned to the client
(lose advantages of caching)

IThe NFS protocol does not provide concurrency-control mechanisms

File System Implementation

Three Major Layers of NFS Architecture

JUNIX file-system interface (based on the open, read, write, and close calls, and file descriptors)

JVirtual File System (VFS) layer — distinguishes local files from remote ones, and local files are
further distinguished according to their file-system types

JThe VFS activates file-system-specific operations to handle local requests according to their file-system
types

Calls the NFS protocol procedures for remote requests

INFS service layer — bottom layer of the architecture
JImplements the NFS protocol

File System Implementation
Schematic View of NFS Architecture

client server

system-calls interface

Y

VFS interface

Y

VFS interface

y Y 4 y

other types of UNIX file NFS NFS UNIX file
file systems system client server system

RPC/XDR RPC/XDR

|

network

File System Implementation

NFS Path-Name Translation

JPerformed by breaking the path into component names and performing a separate NFS lookup
call for every pair of component name and directory vnode

1To make lookup faster, a directory name lookup cache on the client’s side holds the vnodes for
remote directory names

File System Implementation

NFS Remote Operations

INearly one-to-one correspondence between regular UNIX system calls and the NFS protocol
RPCs (except opening and closing files)

INFS adheres to the remote-service paradigm, but employs buffering and caching techniques
for the sake of performance

JFile-blocks cache — when a file is opened, the kernel checks with the remote server whether to
fetch or revalidate the cached attributes

Cached file blocks are used only if the corresponding cached attributes are up to date

IFile-attribute cache — the attribute cache is updated whenever new attributes arrive from the
server

IClients do not free delayed-write blocks until the server confirms that the data have been
written to disk

File System Implementation

Example: WAFL File System

JUsed on Network Appliance “Filers” — distributed file system appliances

J“Write-anywhere file layout”
Serves up NFS, CIFS, http, ftp

JRandom I/O optimized, write optimized
LINVRAM for write caching

JSimilar to Berkeley Fast File System, with extensive modifications

root inode soe
inode file soe
free block map free inode map file in the file system... | <<+

File System Implementation

Snapshots in WAFL

root inode

(a) Before a snapshot.

root inode new snapshot

\

block A[|B||C||D]||E

(b) After a snapshot, before any blocks change.

root inode new snapshot

block A||B||[C||D||E D”

(c) After block D has changedto D".

