Malware Code ™.
Analysis & Detéctions

Quick Contents

* What Is Malware?
» Evolution of Malware

* Technical Overview
Static Analysis
Dynamic Analysis
Code Obfuscation
Protection Methods

Tools

Exploit Frameworks

* Conclusion

THE ARPA NETWORK
PEC [IFe9

4 plo bES
Conceptual Sketch of Original Internet

What Is Malware?

This code is
mot Mahsare

Malicious
purposa’?

by
Crode N This code is a
replicates? Trojan Horse.
b

Infects
a carner o
replicate?

This code s a
Worm.

This code is a
Wirus.

Evolution Of Malware (2)

THE ARPA NMNETwWORK

PEC {79

Email virus + social engineeringe Xmas Exec
f mopes Large scale pandemics: Morri rm
Conceptual Sketch of Orignal Internet Infected 10% Of the Internet

ARPA NETWORK, LOGICAL MAP, JANUARY 1975

Sophisticated engineering: Conficker

Use of Crypto.

BE\ =5 %4 &= Social Networks/cell p
ST\ e | Stuxnet, ...

e worms.

case
=
—— (M} (For)

@ POP-11 FOP-I0
UTiH Vit iveis Mr
e

/1 | | Ir

. gl
| 3ea/1s usc
36007 | camnesie I:s:,

FOF-0

) (eoe - :
| U-03 ra=) 370/14%]

COCENaD] boce
=

POP=10)

! jaaw AR VARD BURROUGHS = . [Foe-10
& AR . 2 |
M [FeF- - ;o " AFWL EGLIN AML
' S 2

ARPA_NET, APRIL 1971

Evolution Of Malware (2)

Malware incidents are

rising dramatically:
» increase of infection vectors From Biology: Connected World Gives Viruses The Edge

* increase in the complexity of « .
botnet structures piexy as human activity makes the world more connected,
natural selection will favor more virulent and

dangerous parasites."

THE 'ill’l:lHI.I:I 3 OMLY RELIABLE NMEWSPAPER

COMPUTER ViRUS

SPREADS TO HUMANS!

Technical Overview

From: Federal Deposit Insurance Corporation To: msgi@cs.bu.edu =
Subject: funds wired into your account are stolen =
¥ Attachments: statement.exe

statement.exe 44 K

Dear bank account owner,

Funds wired 1nto your account gre stolen from innocent account holders through Identity Thett. Plegse
check your account stotement (the stotement is ottached to this letter) and contoct your baonk account
manager .

Federal Deposit Insurance Corporation

Schedule "Send & Receive AT will run in & minutes

Boot Sector Viruses

First sector of disk executed at boot \
moot 2

o —

I
Worked well back when people tradec
Could come back; “autorun.inf” on CDs

Executables
Attach itself to executable

Virus executes before normal
executable is run

Can be multi-platform

Popular method, esp. when
BBS’s used to trade software

Also has infected commercial
software distributions

Still in use today

Static Analysis

01001010100101010
10101010011010101
01001010100101010

10101010011010101 * What does the mal
01001010100101010
10101010011010101
01001010100101010
10101010011010101
10101010011010101
01001010100101010
10101010011010101

.exe

Typically a stripped
binary with no
debugging information.

In the case of malicious

code, it is often obfuscated : l‘?‘Ck of _a_UtO |
and packed * time-critical

e labor inten

Often has embedded suicide logic and * requires a
anti-analysis logic

Dynamic Analysis

Techniques that profile actions of binary at runtim\
More popular
CWSandbox, TTAnalyze, multipathM
Only provides partial “effects-orieW‘
malware potential |

...while on the other hand...

Static Analysis
Can provide complementary insights
Potential for more comprehensive assessme

Code Obfuscation

To defeat signature based detection schemes \
Polymorphism, metamorphism: started appearing in viruses e
90’s primarily to defeat AV tools

To defeat Dynamic Malware Analysis ‘
Anti-debugging, anti-tracing, anti-memor n

VMM detection, emulator detection

To defeat Static Malware analysis
Encryption (packing)
API and control-flow obfuscations
Anti-disassembly

The main purpose of obfuscation is to slow dow
community

Eureka Framework Workflow

Packed

Binary

Trace
Malware
syscalls in

Syscall
trace

Heuristic
based
offline

analysis

Statistics

based

| Evaluator |

Eureka’s
Unpacker

Favorable
execution
point

Dis-
assembly 3 Packed.

IDA-Pro sl
: Statistics

based
Evaluator
Dis- Un-
assembly Packed . }
IDA-Pro ASM

Raw unpacked
Executable

* Unknown OEP

* No debug information

* Unresolved library calls

* Snapshot of data segment
* Unreachable code

* Loss of structures

Unpack
Evaluatio |
. y

Eureka’s Model

Coarse-grained
execution
tracing

NtTerminateProcess
NtCreateProcess

_

Static Analysis of Executable Code

* Find patterns of malicious code inside the executable

* Various approaches possible, most of them inefficient |
Simple-pattern searching: Karp-Rabin, Knuth-Morri ‘
etc.

Repeated parsing of the input data: low perfor

* Best approach: multiple-pattern searching
Data structures + Formal languages + Graph theory

Known approaches: Aho-Corasick, Commentz-Walter,
etc.

Performance vs. memory-usage

e.g. 100,000 patterns in a lookup tree => 4GB of RAM us
version uses 128 MB

Multi-core development

Dynamic Analysis of Executable Code

* System-call analysis
Analysis of disassembled output

Control flow graphs (CFG): http://en.wikipedia.org/wiki/Control_flow_graph ‘

Control dependence graphs (CDG):
http://www.grammatech.com/research/papers/staticAnalysis/imgSlides/sideg

Flow dependence graphs (FDG):
http://www.grammatech.com/research/papers/staticAnalysis/img

Program dependence graphs (PDG):)
http://www.grammatech.com/research/papers/staticAnalysis/i

System dependence graphs (SDQ):
http://www.grammatech. com/research/papers/sl|C|ng/sI|cmgWh|te

Intraprocedural & interprocedural slicing algorithms (e.g. Weiser's ba

System-call sequence analysis

Several approaches available (e.g. Markov chains, statistical anal
weight-analysis, etc.)

Classify program based on detected behavior

How Do We Protect Ourselves? _

* Avoid creating bugs

Write correct code

* Change environments for detecting errors A
Use tools to exploit effectiveness l
Find our own bugs (ethical hacking?) |

* Use appropriate tools

Languages that are type-safe and ensure bound-chec
Smalltalk, ML, Perl) ‘

Subsections of languages and/or code standards (e.g. C++ w
smart pointers, std::strings, STL containers) 1'

Performance vs. correctness (e.g. bounds checking in Pas

Tools

LibSafe \
http://www.research.avayalabs.com/project/libsafe/ '
Intercept calls to functions with known pr
perform extra checks l

Source is not necessary

StackGuard and SSP/ProPolice

Place “canary” values at key places on stack

http://en.wikipedia.org/wiki/Stack-smashing_pr
Terminator (fixed) or random values |
ProPolice patch to gcc

Run-Time & Compile-Time Analysis

BoundsChecker and related tools \
http://www.compuware.com/products/devpartner/ |
Augments code with bounds checking cd
Coverage Analysis l

Rational Purify

http://www-306.ibm.com/software/awdtool

Software Fault Injection

Hardware fault injection well used and \

understood

Software fault injection still emerw.
Active research area at CSL

Identify input areas

Generally network, but could also be files,
environment variables, command line

Inject bad inputs and see what happen

Software Fault Injection — Model

RE

Fault
Injector

. E
»
.

Other Techniques

Fuzzing
A variant of the fault injection model
Create “fuzzed” input to cause errors

ShareFuzz

Intercept all getenv() calls to return very, very long Stw.
SPIKE

An input language for creating variant network packets
From ethereal output, make it easy to express new packets

a_binary(*00 01 02 03")
Data: <00 01 02 03>

a_block_size_big-endian_word("Blockname”);
Data: <00 01 02 03 00 00 00 00>

a_block_start("Blockname”)
a_binary(*o5 06 07 08")
Data: <00 01 02 03 00 00 00 00 05 06 07 08>

a_block_end("Blockname”);
Data: <00 01 02 03 00 00 00 04 05 06 07 08>

Exploit Frameworks

Metasploit

http://www.metasploit.com/index.html >
Canvas ’

http://www.immunitysec.com _

Core Impact

http://www.coresecurity.com/produc
oreimpact/index.php

-No 100% accurate methods for analysis -. >

Godel’s incompleteness theorem
Turing's halting-problem

» Exponentially-increasing databases ca
static analysis

* Perpetually evolving polymorphic and metar
techniques disrupt heuristic/dynamic analysi

* New proactive methods of defense emerg
in kernels of OSs (e.g. PatchGuard in Vista,

....questions? ©

* Malware and Protections, CyberSecurity Lab, 2006

* Reverse Engineering Malware, SRI International, Hassen Saidi
Laboratory

* Hybrid Analysis and Control of Malware, Kevian A. Roud
* Reverse Engineering Malware, Lenny Zeltser, Spring 2010

* Eureka: A Framework for Enabling Static Malware Analysis, \Wanc
Symposium on Research in Computer Security (ESORICS) cont

* Malware Analysis, Jaimin Shah, Krunal Patel, Vishal Patel, Shreyas Pz
Institute of Technology, School of Electrical and Computer Engineerin

* Malware Analysis and Playpen Recuritment Talk, Alan S.H. Lam
* COEN 252 Computer Forensics - Investigating Hacker Tools

* Malware and Exploit Enabling Code, CS498IA, Spring 2007

